Cluster Computing

, Volume 21, Issue 1, pp 691–701 | Cite as

Extreme learning machine based microscopic red blood cells classification

  • Syed Hamad Shirazi
  • Arif Iqbal Umar
  • NuhmanUl Haq
  • Saeeda NazEmail author
  • Muhammad Imran Razzak
  • Ahmad Zaib


The digitalization of blood slides introduced pathology to a new era. Despite being the most powerful prognostic tool; automated analysis of microscopic blood smear images is still not used in routine clinical practices as manual pathological image analysis methods are still in use that is tedious, time consuming and subjective to technician dependent variation, furthermore it also needs training and skills. In this work, we present novel method based on extreme machine learning approach for the classification of red blood cells (RBC) images. Segmentation of RBC is initiated with statistical based thresholding to retrieve those pixels which are most relevant to RBC followed by Fuzzy C-means for the image segmentation and boundary detection. Different texture and geometrical features are extracted for the classification of normal and abnormal cells. The classification technique is rigorously evaluated against the dataset to evaluate the accuracy of classifier. We have compared the results with state of the art techniques. So far the proposed technique has produced more promising results as compared to the existing techniques.


RBC SVM Feature extraction Segmentation ELM 


  1. 1.
    Chaira, T.: Accurate segmentation of leukocyte in blood cell images using Atanassov’s intuitionistic fuzzy and interval Type II fuzzy set theory. Micron 61, 1–8 (2014)CrossRefGoogle Scholar
  2. 2.
    Nazlibilek, S., Karacor, D., Ercan, T., Sazli, M.H., Kalender, O., Ege, Y.: Automatic segmentation, counting, size determination and classification of white blood cells. Measurement 55, 58–65 (2014)CrossRefGoogle Scholar
  3. 3.
    Mathur, A., Tripathi, A.S., Kuse, M.: Scalable system for classification of white blood cells from Leishman stained blood stain images. J. Pathol. Inform. 4(Suppl), S15 (2013)CrossRefGoogle Scholar
  4. 4.
    Labati, R.D., Piuri, V., Scotti, F.: All-IDB: the acute lymphoblastic leukemia image database for image processing. In: 18th IEEE International Conference on Image Processing, pp. 2045–2048 (2011)Google Scholar
  5. 5.
    Mazalan, S.M., Mahmood, N.H., Azhar, M., Razak, A.: Automated red blood cells counting in peripheral blood smear image using circular Hough transform, vol. 1 (2013)Google Scholar
  6. 6.
    Shirazi, S.H., Umar, A.I., Haq, N.U., Naz, S., Razzak, M.I.: Accurate microscopic red blood cell image enhancement and segmentation. In: IWBBIO 2015: Bioinformatics and Biomedical Engineering, Spain, pp. 183–192 (2015)Google Scholar
  7. 7.
    Shirazi, S.H., Haq, N.U., Hayat, K., Naz, S., Haque, I.U.: Curvelet based offline analysis of SEM images. PLoS ONE 9(8), e103942 (2014)CrossRefGoogle Scholar
  8. 8.
    Tomari, R., Zakaria, W.N.W., Jamil, M.M.A., Nor, F.M., Fuad, N.F.N.: Computer aided system for red blood cell classification in blood smear image. Procedia Comput. Sci. 42, 206–213 (2014)CrossRefGoogle Scholar
  9. 9.
    Sharif, J.M., Miswan, M.F., Ngadi, M.A., Hj, S., Mahadi, M.: Red blood cell segmentation using masking and watershed Algorithm?: a preliminary study. In: International Conference on Biomedical Engineering no. February, pp. 258–262 (2012)Google Scholar
  10. 10.
    Di Ruberto, C., Dempster, A., Khan, S., Jarra, B.: Analysis of infected blood cell images using morphological operators. Image Vis. Comput. 20(2), 133–146 (2002)CrossRefGoogle Scholar
  11. 11.
    Vromen, J., McCane, B.: Red blood cell segmentation from SEM images. In: 24th International Conference Image and Vision Computing New Zealand, pp. 44–49 (2009)Google Scholar
  12. 12.
    Wang, R.: Red blood cell surface segmentation based on shape reconstruction and statistics feature extraction. J. Comput. 8(4), 1083–1089 (2013)MathSciNetGoogle Scholar
  13. 13.
    Cai, R., Wu, Q., Zhang, R., Fan, L., Ruan, C.: Red blood cell segmentation using Active Appearance Model. In: 2012 IEEE 11th International Conference on Signal Processing, vol. 3, pp. 1641–1644 (2012)Google Scholar
  14. 14.
    Adollah, R., Mashor, M.Y., Nasir, N.F.M., Rosline, H., Mahsin, H., Adilah, H.: Blood cell image segmentation?: a review, pp. 141–144 (2008)Google Scholar
  15. 15.
    Angulo, J., Flandrin, G.: Automated detection of working area of peripheral blood smears using mathematical morphology. Anal. Cell. Pathol. 25(1), 37–49 (2003)CrossRefGoogle Scholar
  16. 16.
    Ross, N.E., Pritchard, C.J., Rubin, D.M., Dusé, A.G.: Automated image processing method for the diagnosis and classification of malaria on thin blood smears. Med. Biol. Eng. Comput. 44(5), 427–436 (2006)CrossRefGoogle Scholar
  17. 17.
    Sinha, N., Ramakrishnan, A.G.: Automation of differential blood count. In: TENCON 2003. Conference on Convergent Technologies for Asia-Pacific Region, vol. 2, pp. 547–551 (2003)Google Scholar
  18. 18.
    Ghosh, M., Das, D., Chakraborty, C., Ray, A.K.: Automated leukocyte recognition using fuzzy divergence. Micron 41(7), 840–846 (2010)CrossRefGoogle Scholar
  19. 19.
    Piuri, V., Scotti, F.: Morphological classification of blood leucocytes by microscope images. In: IEEE International Conference on Computational Intelligence for Measurement Systems and Applications, CIMSA, pp. 103–108 (2004)Google Scholar
  20. 20.
    Kuse, M., Sharma, T., Gupta, S.: A classification scheme for lymphocyte segmentation in H&E stained histology images. In: Lecture Notes Computer Science (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 6388 LNCS, pp. 235–243, 2010Google Scholar
  21. 21.
    Tang, J., Deng, C., Huang, G.-B.: Extreme learning machine for multilayer perceptron. In: IEEE Transactions on Neural Networks and Learning Systems, pp. 1–13 (2015)Google Scholar
  22. 22.
    Zong, W., Zhou, H., Huang, G.-B., Lin, Z., Face recognition based on kernelized extreme learning machine, pp. 263–272 (2011)Google Scholar
  23. 23.
    Mohammed, A.A., Minhas, R., Wu, Q.J., Sid-Ahmed, M.A.: Human face recognition based on multidimensional PCA and extreme learning machine. Pattern Recognit. 44(10–11), 2588–2597 (2011)CrossRefzbMATHGoogle Scholar
  24. 24.
    López-fandiño, J., Quesada-barriuso, P., Heras, D.B., Argüello, F.: Efficient ELM-based techniques for the classification of hyperspectral remote sensing images on commodity GPUs, no. Mlc, pp. 1–10 (2014)Google Scholar
  25. 25.
    An, L., Yang, S., Bhanu, B.: Efficient smile detection by extreme learning machine. Neurocomputing 149, 354–363 (2015)CrossRefGoogle Scholar
  26. 26.
    Duda, R.O., Hart, P.E.: Use of the Hough transformation to detect lines and curves in pictures. Commun. ACM 15(1), 11–15 (1972)Google Scholar
  27. 27.
    Chourasiya, S.: Automatic red blood cell counting using watershed segmentation, vol. 5, no. 4, pp. 4834–4838 (2014)Google Scholar
  28. 28.
    Tuceryan, M., Tuceryan, M., Jain, A.K.: The handbook of pattern recognition and computer vision (2nd edn). In: Texture Analysis, Pattern Recognit., pp. 207–248 (1998)Google Scholar
  29. 29.
    Razzak, M.I., Alhaqbani, B.: Automatic detection of malarial parasite using microscopic blood images. J. Med. Imaging Health Inform. 5(3), 591–598 (2015)CrossRefGoogle Scholar
  30. 30.
    Salzberg, S.L.: On comparing classifiers: Pitfalls to avoid and a recommended approach. Data Min. Knowl. Discov. 1(3), 317–328 (1997)CrossRefGoogle Scholar
  31. 31.
    Fawcett, T.: An introduction to ROC analysis. Pattern Recognit. Lett. 27(8), 861–874 (2006)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Lee, H., Chen, Y.-P.P.: Cell morphology based classification for red cells in blood smear images. Pattern Recognit. Lett. 49, 155–161 (2014)CrossRefGoogle Scholar
  33. 33.
    Chatap, N., Shibu, S.: Analysis of blood samples for counting leukemia cells using Support vector machine and nearest neighbour. IOSR J. Comput. Eng. 16(5), 79–87 (2014)CrossRefGoogle Scholar
  34. 34.
    Razzak, M.I.: Automatic detection and classification of malarial parasite. Int. J. Biom. Bioinf. 9(1), 1–12 (2015)Google Scholar
  35. 35.
    Shirazi, S.H., Umar, A.I., Naz, S., Razzak, M.I.: Efficient leukocyte segmentation and recognition in peripheral blood image. Technol. Health Care 24(3), 335–347 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Syed Hamad Shirazi
    • 1
  • Arif Iqbal Umar
    • 1
  • NuhmanUl Haq
    • 2
  • Saeeda Naz
    • 1
    • 4
    Email author
  • Muhammad Imran Razzak
    • 3
  • Ahmad Zaib
    • 5
  1. 1.Hazara UniversityMansehraPakistan
  2. 2.Comsats Institute of ITAbbottabadPakistan
  3. 3.King Saud bin Abdulaziz University for Health SciencesRiyadhSaudi Arabia
  4. 4.Govt. Girls Postgraduate College No. 1AbbottabadPakistan
  5. 5.Women Medical CollegeAbbottabadPakistan

Personalised recommendations