Advertisement

Cluster Computing

, Volume 21, Issue 1, pp 681–690 | Cite as

Wearable sensor devices for early detection of Alzheimer disease using dynamic time warping algorithm

  • R. VaratharajanEmail author
  • Gunasekaran Manogaran
  • M. K. Priyan
  • Revathi Sundarasekar
Article

Abstract

Alzheimer disease is a significant problem in public health. Alzheimer disease causes severe problems with thinking, memory and activities. Alzheimer disease affected more on the people who are in the age group of 80-year-90. The foot movement monitoring system is used to detect the early stage of Alzheimer disease. internets of things (IoT) devices are used in this paper to monitor the patients’ foot movement in continuous manner. This paper uses dynamic time warping (DTW) algorithm to compare the various shapes of foot movements collected from the wearable IoT devices. The foot movements of the normal individuals and people who are affected by Alzheimer disease are compared with the help of middle level cross identification (MidCross) function. The identified cross levels are used to classify the gait signal for Alzheimer disease diagnosis. Sensitivity and specificity are calculated to evaluate the DTW algorithm based classification model for Alzheimer disease. The classification results generated using the DTW is compared with the various classification algorithms such as inertial navigation algorithm, K-nearest neighbor classifier and support vector machines. The experimental results proved the effectiveness of the DTW method.

Keywords

Internets of things Alzheimer disease Dynamic time warping Middle level cross identification Inertial navigation algorithm K-nearest neighbor classifier Support vector machines 

References

  1. 1.
  2. 2.
    Chandra, V., Pandav, R., Dodge, H.H., Johnston, J.M., Belle, S.H., DeKosky, S.T., Ganguli, M.: Incidence of Alzheimer’s disease in a rural community in India The Indo-US Study. Neurology 57(6), 985–989 (2001)CrossRefGoogle Scholar
  3. 3.
    Chandra, V., Ganguli, M., Pandav, R., Johnston, J., Belle, S., DeKosky, S.T.: Prevalence of Alzheimer’s disease and other dementias in rural India The Indo-US study. Neurology 51(4), 1000–1008 (1998)CrossRefGoogle Scholar
  4. 4.
    Pandav, R.S., Chandra, V., Dodge, H.H., DeKosky, S.T., Ganguli, M.: Hemoglobin levels and Alzheimer disease: an epidemiologic study in India. Am. J. Geriatr. Psychiatry 12(5), 523–526 (2004)CrossRefGoogle Scholar
  5. 5.
    Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw. 54(15), 2787–2805 (2010)CrossRefzbMATHGoogle Scholar
  6. 6.
    Zhu, N., Diethe, T., Camplani, M., Tao, L., Burrows, A., Twomey, N., Kaleshi, D., Mirmehdi, M., Flach, P., Craddock, I.: Bridging e-health and the internet of things: the sphere project. IEEE Intell. Syst. 30(4), 39–46 (2015)CrossRefGoogle Scholar
  7. 7.
    Manogaran, G., Thota, C., Lopez, D., Vijayakumar, V., Abbas, K.M., Sundarsekar, R.: Big Data Knowledge System in Healthcare. InInternet of Things and Big Data Technologies for Next Generation Healthcare, pp. 133–157. Springer, Berlin (2017)CrossRefGoogle Scholar
  8. 8.
    Tsai, C.W., Lai, C.F., Chiang, M.C., Yang, L.T.: Data mining for Internet of Things: A survey. IEEE Commun. Surv. Tutor. 16(1), 77–97 (2014)CrossRefGoogle Scholar
  9. 9.
    Agrawal, S., Das, M.L.: Internet of things—a paradigm shift of future internet applications. In: 2011 Nirma University International Conference on Engineering (NUiCONE), pp. 1–7. IEEE, 8 Dec 2011Google Scholar
  10. 10.
    Alam, S., Chowdhury, M.M., Noll, J.: Senaas: an event-driven sensor virtualization approach for internet of things cloud. In: 2010 IEEE International Conference on Networked Embedded Systems for Enterprise Applications (NESEA), pp. 1–6. IEEE, 25 Nov 2010Google Scholar
  11. 11.
    Pasluosta, C.F., Gassner, H., Winkler, J., Klucken, J., Eskofier, B.M.: An emerging era in the management of Parkinson’s disease: wearable technologies and the internet of things. IEEE J. Biomed. Health Inform. 19(6), 1873–1881 (2015)CrossRefGoogle Scholar
  12. 12.
    Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of things (IoT): a vision, architectural elements, and future directions. Future Gener. Comput. Syst. 29(7), 1645–1660 (2013)CrossRefGoogle Scholar
  13. 13.
    Botta, A., De Donato, W., Persico, V., Pescapé, A.: On the integration of cloud computing and internet of things. In: 2014 International Conference on Future Internet of Things and Cloud (FiCloud), pp. 23–30. IEEE, 27 Aug 2014Google Scholar
  14. 14.
    Barnaghi, P., Wang, W., Henson, C., Taylor, K.: Semantics for the internet of things: early progress and back to the future. Int. J. Semant. Web Inf. Syst. (IJSWIS) 8(1), 1–21 (2012)CrossRefGoogle Scholar
  15. 15.
    Da Xu, L., He, W., Li, S.: Internet of things in industries: a survey. IEEE Trans. Ind. Inform. 10(4), 2233–2243 (2014)CrossRefGoogle Scholar
  16. 16.
    Wang, Y.P., Lin, X., Adhikary, A., Grovlen, A., Sui, Y., Blankenship, Y., Bergman, J., Razaghi, H.S.: A primer on 3GPP narrowband internet of things. IEEE Commun. Mag. 55(3), 117–123 (2017)CrossRefGoogle Scholar
  17. 17.
    Stojkoska, B.L., Trivodaliev, K.V.: A review of internet of things for smart home: challenges and solutions. J. Clean. Prod. 1(140), 1454–1464 (2017)CrossRefGoogle Scholar
  18. 18.
    Manogaran, G., Thota, C., Kumar, M.V.: MetaCloudDataStorage architecture for big data security in cloud computing. Procedia Comput. Sci. 31(87), 128–133 (2016)CrossRefGoogle Scholar
  19. 19.
    Manogaran, G., Lopez, D.: Spatial cumulative sum algorithm with big data analytics for climate change detection. Comput. Electr. Eng. 59(1), 1–25 (2017)Google Scholar
  20. 20.
    Lopez, D., Manogaran, G.: Modelling the H1N1 influenza using mathematical and neural network approaches. Biomed. Res. 28(8), 1–5 (2017)Google Scholar
  21. 21.
    Manogaran, G., Thota, C., Lopez, D., Sundarasekar, R.: Big data security intelligence for Healthcare Industry 4.0. In: Cybersecurity for Industry 4.0, pp. 103–126. Springer, Berlin (2017)Google Scholar
  22. 22.
    Mulani, T.T., Pingle, S.V.: Internet of things. Int. Res. J. Multidiscip. Stud. 2(3) (2016)Google Scholar
  23. 23.
    Botta, A., De Donato, W., Persico, V., Pescapé, A.: Integration of cloud computing and internet of things: a survey. Future Gener. Comput. Syst. 31(56), 684–700 (2016)CrossRefGoogle Scholar
  24. 24.
    Bello, O., Zeadally, S.: Intelligent device-to-device communication in the internet of things. IEEE Syst. J. 10(3), 1172–1182 (2016)CrossRefGoogle Scholar
  25. 25.
    Liu, J., Wan, J., Wang, Q., Deng, P., Zhou, K., Qiao, Y.: A survey on position-based routing for vehicular ad hoc networks. Telecommun. Syst. 62(1), 15–30 (2016)CrossRefGoogle Scholar
  26. 26.
    Li, G., Ma, M., Liu, C., Shu, Y.: Routing in taxi and public transport based heterogeneous vehicular networks. In: Region 10 Conference (TENCON), 2016 IEEE, pp. 1863–1866. IEEE, 22 Nov 2016Google Scholar
  27. 27.
    Dinesh, M., Sudhaman, K.: Real time intelligent image processing system with high speed secured internet of things: image processor with IOT. In: 2016 International Conference on Information Communication and Embedded Systems (ICICES), pp. 1–5. IEEE, 25 Feb 2016Google Scholar
  28. 28.
    Kaur, A., Kaur, P.: A comparative study of various exudate segmentation techniques for diagnosis of diabetic retinopathy. Int. J. Curr. Eng. Technol. 46(1), 142–146 (2016)MathSciNetGoogle Scholar
  29. 29.
    Jeyabalan, K.: Home Healthcare and Remote Patient Monitoring. Internet of Things and Data Analytics Handbook, pp. 675–682 (2017)Google Scholar
  30. 30.
    Hiremath, S., Yang, G., Mankodiya, K.: Wearable internet of things: concept, architectural components and promises for person-centered healthcare. In: 2014 EAI 4th International Conference on Wireless Mobile Communication and Healthcare (Mobihealth), pp. 304–307. IEEE, 3 Nov 2014Google Scholar
  31. 31.
    Patel, A.R., Patel, R.S., Singh, N.M., Kazi, F.S.: Vitality of Robotics in Healthcare Industry: an internet of things (IoT) perspective. In: Internet of Things and Big Data Technologies for Next Generation Healthcare, pp. 91–109. Springer, Berlin (2017)Google Scholar
  32. 32.
    Memon, M., Wagner, S.R., Pedersen, C.F., Beevi, F.H., Hansen, F.O.: Ambient assisted living healthcare frameworks, platforms, standards, and quality attributes. Sensors 14(3), 4312–4341 (2014)Google Scholar
  33. 33.
    Zhang, X., Francis, B.A., Dastiridou, A., Chopra, V., Tan, O., Varma, R., Greenfield, D.S., Schuman, J.S., Huang, D., Advanced Imaging for Glaucoma Study Group: Longitudinal and cross-sectional analyses of age effects on retinal nerve fiber layer and ganglion cell complex thickness by Fourier-domain OCT. Transl. Vis. Sci. Technol. 5(2):1 (2016)Google Scholar
  34. 34.
    Bianchi, F., Redmond, S.J., Narayanan, M.R., Cerutti, S., Lovell, N.H.: Barometric pressure and triaxial accelerometry-based falls event detection. IEEE Trans. Neural Syst. Rehabil. Eng. 18(6), 619–627 (2010)CrossRefGoogle Scholar
  35. 35.
    Bamberg, S.J., Benbasat, A.Y., Scarborough, D.M., Krebs, D.E., Paradiso, J.A.: Gait analysis using a shoe-integrated wireless sensor system. IEEE Trans. Inf. Technol. Biomed. 12(4), 413–423 (2008)CrossRefGoogle Scholar
  36. 36.
    Patterson, D.J., Fox, D., Kautz, H., Philipose, M.: Fine-grained activity recognition by aggregating abstract object usage. In: Ninth IEEE International Symposium on Wearable Computers, 2005. Proceedings, pp. 44–51). IEEE, 18 Oct 2005Google Scholar
  37. 37.
    Im, S., Kim, I.J., Ahn, S.C., Kim, H.G.: Automatic ADL classification using 3-axial accelerometers and RFID sensor. In: IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, 2008. MFI 2008, pp. 697–702. IEEE, 20 Aug 2008Google Scholar
  38. 38.
    Farringdon, J., Moore, A.J., Tilbury, N., Church, J., Biemond, P.D.: Wearable sensor badge and sensor jacket for context awareness. In: The Third International Symposium on Wearable Computers, 1999. Digest of Papers, pp. 107–113. IEEE, 18 Oct 1999Google Scholar
  39. 39.
    Atallah, L., Lo, B., King, R., Yang, G.Z.: Sensor placement for activity detection using wearable accelerometers. In: 2010 International Conference on Body Sensor Networks (BSN), pp. 24–29. IEEE, 7 June 2010Google Scholar
  40. 40.
    Bulling, A., Ward, J.A., Gellersen, H., Troster, G.: Eye movement analysis for activity recognition using electrooculography. IEEE Trans. Pattern Anal. Mach. Intell. 33(4), 741–753 (2011)CrossRefGoogle Scholar
  41. 41.
    Crouter, S.E., Clowers, K.G., Bassett, D.R.: A novel method for using accelerometer data to predict energy expenditure. J. Appl. Physiol. 100(4), 1324–1331 (2006)CrossRefGoogle Scholar
  42. 42.
    Uji, A., Abdelfattah, N.S., Boyer, D.S., Balasubramanian, S., Lei, J., Sadda, S.R.: Variability of retinal thickness measurements in tilted or stretched optical coherence tomography images. Transl. Vis. Sci. Technol. 6(2):1 (2017)Google Scholar
  43. 43.
    Li, C., Wang, X., Eberl, S., Fulham, M., Feng, D.: A new energy framework with distribution descriptors for image segmentation. IEEE Trans. Image Process. 22(9), 3578–3590 (2013)CrossRefGoogle Scholar
  44. 44.
    Manogaran, G., Lopez, D., Thota, C., Abbas, K. M., Pyne, S., Sundarasekar, R.: Big data analytics in healthcare internet of things. In: Innovative Healthcare Systems for the 21st Century, pp. 263–284. Springer, Berlin (2017)Google Scholar
  45. 45.
    Thota, C., Sundarasekar, R., Manogaran, G., Varatharajan, R., Priyan, M.K: Centralized fog computing security platform for iot and cloud in healthcare system. In: Exploring the Convergence of Big Data and the Internet of Things. IGI Global, USAGoogle Scholar
  46. 46.
    Yang, C.C., Hsu, Y.L.: A review of accelerometry-based wearable motion detectors for physical activity monitoring. Sensors 10(8), 7772–7788 (2010)CrossRefGoogle Scholar
  47. 47.
    Manogaran, G., Lopez, D.: Health data analytics using scalable logistic regression with stochastic gradient descent. Int. J. Adv. Intell. Paradig. 9(1), 1–18 (2016)Google Scholar
  48. 48.
    Thota, C., Manogaran, G., Lopez, D.: Architecture for big data storage in different cloud deployment models. In: Segall, R.S., Cook, J.S., Gupta, N. (eds.) Big Data Storage and Visualization Techniques. IGI GlobalGoogle Scholar
  49. 49.
    Sempena, S., Maulidevi, N.U., Aryan, P.R.: Human action recognition using dynamic time warping. In: 2011 International Conference on Electrical Engineering and Informatics (ICEEI), pp. 1–5. IEEE, 17 July 2011Google Scholar
  50. 50.
    Salvador, S., Chan, P.: Toward accurate dynamic time warping in linear time and space. Intell. Data Anal. 11(5), 561–580 (2007)Google Scholar
  51. 51.
    Baumann, M., Ozdogan, M., Richardson, A.D., Radeloff, V.C.: Phenology from Landsat when data is scarce: using MODIS and dynamic time-warping to combine multi-year Landsat imagery to derive annual phenology curves. Int. J. Appl. Earth Obs. Geoinf. 28(54), 72–83 (2017)CrossRefGoogle Scholar
  52. 52.
    Zhang, Z., Tavenard, R., Bailly, A., Tang, X., Tang, P., Corpetti, T.: Dynamic time warping under limited warping path length. Inf. Sci. 31(393), 91–107 (2017)CrossRefGoogle Scholar
  53. 53.
    Wan, Y., Chen, X.L., Shi, Y.: Adaptive cost dynamic time warping distance in time series analysis for classification. J. Comput. Appl. Math. 1(319), 514–520 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Lopez, D., Gunasekaran, M., Murugan, B.S., Kaur, H., Abbas, K.M.: Spatial big data analytics of influenza epidemic in Vellore, India. In: 2014 IEEE International Conference on Big Data (Big Data), pp. 19–24. IEEE, 27 Oct 2014Google Scholar
  55. 55.
    Lopez, D., Gunasekaran, M.: Assessment of vaccination strategies using fuzzy multi-criteria decision making. In: Proceedings of the Fifth International Conference on Fuzzy and Neuro Computing (FANCCO-2015) 2015, pp. 195–208. Springer, BerlinGoogle Scholar
  56. 56.
    Lopez, D., Sekaran, G.: Climate change and disease dynamics-A big data perspective. Int. J. Infect. Dis. 1(45), 23–24 (2016)CrossRefGoogle Scholar
  57. 57.
    Lopez, D., Manogaran, G.: Big data architecture for climate change and disease dynamics. The Human Element of Big Data: Issues, Analytics, and Performance. CRC Press, Boca Raton (2016)Google Scholar
  58. 58.
    Manogaran, G., Lopez, D.: Disease surveillance system for big climate data processing and dengue transmission. Int. J. Ambient Comput. Intell. 8(2), 88–105 (2017)CrossRefGoogle Scholar
  59. 59.
    Wen, J., Chang, X.W.: Success probability of the Babai estimators for box-constrained integer linear models. IEEE Trans. Inf. Theory 63(1), 631–648 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  60. 60.
    Cai, T.T., Wang, L.: Orthogonal matching pursuit for sparse signal recovery with noise. IEEE Trans. Inf. Theory 57(7), 4680–4688 (2011)Google Scholar
  61. 61.
    Wen, J., Li, D., Zhu, F.: Stable recovery of sparse signals via lp-minimization. Appl. Comput. Harmonic Anal. 38(1), 161–176 (2015)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • R. Varatharajan
    • 1
    Email author
  • Gunasekaran Manogaran
    • 2
  • M. K. Priyan
    • 2
  • Revathi Sundarasekar
    • 3
  1. 1.Sri Ramanujar Engineering CollegeChennaiIndia
  2. 2.VIT UniversityVelloreIndia
  3. 3.Priyadarshini Engineering CollegeVelloreIndia

Personalised recommendations