Advertisement

Cluster Computing

, Volume 21, Issue 1, pp 79–90 | Cite as

Efficient iris recognition using Haralick features based extraction and fuzzy particle swarm optimization

  • Ravi SubbanEmail author
  • N. Susitha
  • Dattatreya P. Mankame
Article

Abstract

Iris identification technology is the most versatile non-contact scanning technique, based on mathematical pattern matching. This outstanding authentication method proves its merit exceedingly well in terms of high verification speed, capability of handling large database, reliability for both 1:1 and 1:n verification mode. Iris recognition technology evaluates the unique features of iris for efficient identification or verification of identity of human beings. This biometric technique can be successfully deployed for time and attendance, surveillance, ATM, E-commerce and banking kiosks, border control mechanism, criminal identification, citizen identification, PC/network access, and so on. The distinctive and complex iris pattern has the capability for remarkably high rate of accuracy in recognition. This deployment is composed of image acquisition, image preprocessing, feature extraction, template generation, template matching and classification. Our research work applies improved techniques for optimal iris recognition. Weight sampled geodesic active contours technique efficiently segments the edges of iris. Besides Haralick feature extraction method extracts the key features of iris. Optimized feature selection is carried out by fuzzy controlled particle swarm optimization, inspired by biological evolution and swarming intelligence. Relevance vector machine, a machine learning technique superior than traditional support vector machines performs much better probabilistic supervised classification. The experiments with CASIA version 3 dataset of iris images proves the proposed methods overweigh the existing methods in terms of accuracy, processing time, specificity and sensitivity.

Keywords

Fuzzy particle swarm optimization Relevance vector machine Weight sampled geodesic active contour Haralick feature Iris recognition 

References

  1. 1.
    Jan, F., Usman, I., Agha, S.: Iris localization in frontal eye images for less constrained iris recognition systems. Digit. Signal Process. 22(6), 971–986 (2012)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Sibai, F.N., Hosani, H.I., Naqbi, R.M., Dhanhani, S., Shehhi, S.: Iris recognition using artificial neural networks. Expert Syst. Appl. 38(5), 5940–5946 (2011)CrossRefGoogle Scholar
  3. 3.
    Suresh, A., Shunmuganathan, K.L.: Feature fusion technique for colour texture classification system based on gray level co-occurrence matrix. J. Comput. Sci. 8(12), 2106–2111 (2012)CrossRefGoogle Scholar
  4. 4.
    Bowyer, K.W., Hollingsworth, K., Flynn, P.J.: Image understanding for iris biometrics: a survey. Comput. Vis. Image Underst. 110(2), 281–307 (2008)CrossRefGoogle Scholar
  5. 5.
    Daugman, J.: New methods in Iris recognition. IEEE Trans. Syst. Man Cybern. 37(5), 1167–1175 (2007)CrossRefGoogle Scholar
  6. 6.
    Gale, A.G., Salankar, S.S.: A review on advance methods of feature extraction in iris recognition system. IOSR J. Elect. Electron. Eng. (IOSR-JEEE), e-ISSN: 2278–1676, p-ISSN: 2320–3331, pp. 65–70 (2014)Google Scholar
  7. 7.
    Chen, B., Liu, Z.Q., Zhu, X.H.: Eye location in human face images using fuzzy integral, In: Proceedings of the Second International Conference on Machine Learning and Cybernetics, 2003. (IEEE 2003)Google Scholar
  8. 8.
    Ma, L., Tan, T., Wang, Y., Zhang, D.: Personal identification based on iris texture analysis. IEEE Trans. Pattern Anal. Mach. Intell. 25(12), 1519–1533 (2003)CrossRefGoogle Scholar
  9. 9.
    Narayankar, N., Dhaygude, S.: Texture extraction for image retrieval using local tetra pattern. Int. J. Adv. Res. Electr. Electron. Instrum. Eng. doi: 10.15662/ijareeie.2014.0307020
  10. 10.
    Asteriadis, S., Nikolaidis, N., Hajdu, A.: A novel eye detection algorithm utilizing edge-related geometrical information, IEEE, ISSN 2219–5491. INSPEC Accession Number 15024086, (2015)Google Scholar
  11. 11.
    Suresh, A., Shunmuganathan, K.L.: A novel colour texture classification approach based on gray level co-occurrence matrix. Int. J. Comput. Inf. Syst. 5(3), 7175 (2012)Google Scholar
  12. 12.
    D’Orazio, T., Leo, M., Spagnolo, P., and Guaragnella, C.: A neural system for eye detection in a driver vigilance application meeting. In: IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, pp. 320–325 (2004)Google Scholar
  13. 13.
    Kale, K.V.: Multi -wavelet based feature extraction algorithm for iris recognition. Int. J. Eng. Innov. Technol (2014)Google Scholar
  14. 14.
    Daugman, J.G.: High confidence visual recognition of persons by a test of statistical independence. IEEE Trans. Pattern Anal. Mach. Intell. 15(11), 1148–1161 (1993)CrossRefGoogle Scholar
  15. 15.
    Zhou, J., Luo, T., ShijunGuo, M., Qing, T.: Using 2D haar wavelet transform for iris feature extraction. Sci. Res, 978-1-935068-47-1 (2010)Google Scholar
  16. 16.
    Dhage, S.S., Hegde, S.S., Manikantan, K., Ramachandran, S.: Dwt-based feature extraction and radon transform based contrast enhancement for improved iris recognition. Procedia. Comput. Sci. 45, 256–265 (2015)CrossRefGoogle Scholar
  17. 17.
    Kekre, H.B., Tahuja, K.S., Vinayak, A.B., Abishek, A.A., Rohan, J.A., Mahesh, C.H.: Performance comparison of DCT and VQ based techniques for iris recognition. J. Electron. Sci. Technol. 8(3), 223–229 (2010)Google Scholar
  18. 18.
    Wildes, R.P.: Iris recognition: an emerging biometric technology. Proc. IEEE 85(9), 1348–1363 (1997)CrossRefGoogle Scholar
  19. 19.
    Krichen, E., Garcia-Salicetti, S., Dorizzi, B.: A new phase-correlation-based iris matching for degraded images. IEEE Trans. Syst. Man Cybernet. 39(4), 924–934 (2009)CrossRefGoogle Scholar
  20. 20.
    Suresh, A., Shunmuganathan, K.L.: Image texture classification using gray level co-occurrence matrix based statistical features. Eur. J. Sci. Res. 75(4), 591–597 (2012)Google Scholar
  21. 21.
    De Martin-Roche, D., Sanchez-Avila, C., Sanchez-Reillo, R.: Iris recognition for biometric identification using dyadic wavelet transform zero-crossing. In: Proceedings IEEE 35th Annual 2001 International Carnahan Conference on Security Technology Cat No01CH37186, pp. 272–277 (2001)Google Scholar
  22. 22.
    Vatsa, M., Singh, R., Noore, A.: Improving iris recognition performance using segmentation, quality enhancement, match score fusion, and indexing. IEEE Trans. Syst. Man Cybernet. 38(4), 1021–1035 (2008)CrossRefGoogle Scholar
  23. 23.
    Daugman, J.: New methods in iris recognition. IEEE Trans. Syst. Man Cybernet. 37(5), 1167–1175 (2007)CrossRefGoogle Scholar
  24. 24.
    Roy, K., Bhattacharya, P.: Collarette area localization and asymmetrical support vector machines for efficient iris recognition. In: Proceedings of the 14th International Conference on Image Analysis and Processing, ICIAP 2007, pp. 3–8 (2007)Google Scholar
  25. 25.
    Gupta, Amrata: An efficient iris recognition system using DCT transform based on feed forward neural networks. Int. J. Softw. Hardw. Res. Eng. 3(4), 2347–4890 (2015)Google Scholar
  26. 26.
    Murala, S., Maheshwari, R.P., Balasubramanian, R.: Local tetra patterns: a new feature descriptor for content-based image retrieval. IEEE Trans. Image Process. 21(5), 2874–2886 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybernet. 3(6), 610–621 (1973)CrossRefGoogle Scholar
  28. 28.
    Suresh, A., Shunmuganathan, K.L.: An efficient texture classification system based on gray level co-occurrence matrix. Int. J. Comput. Sci. Inf. Technol. Secur. 2(4), 793–798 (2012)Google Scholar
  29. 29.
    Sundaram, R.M., Dhara, B.C.: Neural network based Iris recognition system using Haralick features. Third Int. Conf. Electron. Comput. Technol. 3, 19–23 (2011)Google Scholar
  30. 30.
    Amir Azizi Islamic Azad University, Hamid, Mashhad Branch: A novel method for iris feature extraction based on contourlet transform and cooccurrence matrix. Reza Pourreza Ferdowsi University of Mashhad, Department of computer engineering (2009)Google Scholar
  31. 31.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. Neural networks. In: Proceedings, IEEE International Conference on 4, vol. 4, pp. 1942–1948. (1995)Google Scholar
  32. 32.
    Bansal, A., Agarwal, R., Sharma, R.K.: Determining diabetes using iris recognition system. Int. J. Diabetes. Dev. Ctries. 35(4), 432–438 (2015)CrossRefGoogle Scholar
  33. 33.
    Ahmad F., Roy K.: Multispectral iris recognition system based on group selection and game theory. In: Proc. SPIE 10203, Pattern Recognition and Tracking XXVIII, 1020309, (2017) doi: 10.1117/12.2262607
  34. 34.
    Jamaludin, S., Zainal, N., Zaki, M.D.W.: Comparison of iris recognition between active contour and Hough transform. J. Telecommun. Eng. 8(4), 53–58 (2016)Google Scholar
  35. 35.

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Ravi Subban
    • 1
    Email author
  • N. Susitha
    • 2
  • Dattatreya P. Mankame
    • 3
  1. 1.Department of Computer Science, School of Engineering and TechnologyPondicherry UniversityPuducherryIndia
  2. 2.Mother Teresa Women’s UniversityKodaikanalIndia
  3. 3.Department of Information Science and EngineeringKLE Institute of TechnologyHubballiIndia

Personalised recommendations