Cluster Computing

, Volume 21, Issue 1, pp 493–502 | Cite as

Region and texture based effective image extraction

  • Khawaja Tehseen AhmedEmail author
  • Muhammad Amjad Iqbal


Images can be well defined by the primitive shape and texture features. In this paper we combined these features in a novel way. We presented a scheme of the local interest point detection and their global description in a more meaningful way. We extracted the image signatures by assembling the interest points at different levels of the representation. For this, at first shape feature are collected by grouping the connected pixels to create the regions based on binary intensity threshold. Histogram of oriented gradients is used to describe the features for the detected interest points returned for maximally stable regions. These signatures are combined with rotation invariant texture features extracted by using uniform local binary pattern after applying the proposed reordering algorithm. The algorithm intakes the number of observations for the region and texture features and returns the compact dimensions as input for the limited principal components computation. Our proposed technique is experimented against the existing research methods on Corel-100, Caltech-101 and Caltech-256 datasets and outperforms in many image categories. Experimentation results show that a combination of local and global features strengthens the capability of the proposed method to retrieve the foreground and background objects. Furthermore, feature description using sliding window fashion makes this approach more robust to object recognition.


Interest point detection Local and global features Region based extraction Texture analysis Image classification Support vector machine 


  1. 1.
    Dalal, N., and Triggs, B.: Histograms of oriented gradients for human detection. In: Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, vol. 1, pp. 886–893. IEEE (2005)Google Scholar
  2. 2.
    Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Comput. Vis. Image. Underst. 110(3), 346–359 (2008)CrossRefGoogle Scholar
  3. 3.
    Zhao, G., Ahonen, T., Matas, J., Pietikainen, M.: Rotation-invariant image and video description with local binary pattern features. IEEE Trans. Image Process. 21(4), 1465–1477 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Prathap, K.S.V., Jilani, S.A.K., Ramana Reddy, P.: A critical review on Image Mosaicing. In: 2016 International Conference on Computer Communication and Informatics (ICCCI), pp. 1–8. IEEE (2016)Google Scholar
  5. 5.
    Moravec, H.: Obstacle Avoidance and Navigation in the Real World by a Seeing Robot Rover. Technical Report CMU-RI-TR-3, Carnegie-Mellon University, Robotics Institute (1980)Google Scholar
  6. 6.
    Harris, C., Stephens, M.: A combined corner and edge detector. Alvey Vis. Conf. 15, 50 (1988)Google Scholar
  7. 7.
    Zhao, W.J., Gong, S.R., Liu, C.P., Shen, X.J.: Adaptive Harris corner detection algorithm. Comput. Eng. 10(5), 212–215 (2008)Google Scholar
  8. 8.
    Shi, J., Carlo, T.: Good features to track. In: Computer Vision and Pattern Recognition, 1994. Proceedings CVPR’94., 1994 IEEE Computer Society Conference on, pp. 593–600. IEEE (1994)Google Scholar
  9. 9.
    Yu, Y., Huang, K., Tan, T.: A Harris-like scale invariant feature detector. Asian Conference on Computer Vision, pp. 586–595. Springer, Heidelberg (2009)Google Scholar
  10. 10.
    Winnemöller, H.: XDoG: advanced image stylization with extended difference-of-gaussians.” In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Non-Photorealistic Animation and Rendering, pp. 147–156. ACM (2011)Google Scholar
  11. 11.
    Alahi, A., Ortiz, R., Vandergheynst, P.: Freak: fast retina key point. In: Computer vision and pattern recognition (CVPR), 2012 IEEE conference on, pp. 510–517. IEEE (2012)Google Scholar
  12. 12.
    Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. European Conference on Computer Vision, pp. 430–443. Springer, Heidelberg (2006)Google Scholar
  13. 13.
    Lowe, D.G.: Object recognition from local scale-invariant features. In: Computer vision, 1999. The proceedings of the seventh IEEE international conference on, vol. 2, pp. 1150–1157. IEEE (1999)Google Scholar
  14. 14.
    Soille, P.: Morphological Image Analysis: Principles and Applications. Springer, New York (2013)zbMATHGoogle Scholar
  15. 15.
    Mehta, N., Prasad, S.V.A.V., Arya, L., Pant. M.: A novel approach for the analysis of US images using morphological image processing techniques. In: Computing for Sustainable Global Development (INDIACom), 2015 2nd International Conference on, pp. 868–872. IEEE, (2015)Google Scholar
  16. 16.
    Zuo, C., Chen, Q., Sui, X.: Range limited bi-histogram equalization for image contrast enhancement. Optik-Int. J. Light Electron Optics 124(5), 425–431 (2013)CrossRefGoogle Scholar
  17. 17.
    Senthilkumaran, N., Thimmiaraja J.: Histogram equalization for image enhancement using MRI brain images. In: Computing and Communication Technologies (WCCCT), 2014 World Congress on, pp. 80–83. IEEE (2014)Google Scholar
  18. 18.
    Ryu, S.J., Kirchner, M., Lee, M.J., Lee, H.K.: Rotation invariant localization of duplicated image regions based on Zernike moments. IEEE Trans. Inf. Forensics Secur. 8(8), 1355–1370 (2013)CrossRefGoogle Scholar
  19. 19.
    Chang, T.Y., Tai, S.C., Lin G.S.: A near-duplicate video retrieval method based on Zernike moments. In: 2015 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA), pp. 860–864. IEEE (2015)Google Scholar
  20. 20.
    Hsieh, J.W., Grimson, W.E.L., Chiang, C.C., Huang, Y.S.: Region-based image retrieval. In: Image Processing, 2000. Proceedings. 2000 International Conference on, vol. 1, pp. 77–80. IEEE (2000)Google Scholar
  21. 21.
    Jing, F., Li, M., Zhang, H.J., Zhang, B.: An efficient and effective region-based image retrieval framework. IEEE Trans. Image Process. 13(5), 699–709 (2004)CrossRefGoogle Scholar
  22. 22.
    Prasad, B.G., Biswas, K.K., Gupta, S.K.: Region-based image retrieval using integrated color, shape, and location index. Comput Vis. Image Underst. 94(1), 193–233 (2004)CrossRefGoogle Scholar
  23. 23.
    Jing, F., Li, M., Zhang, H.J., Zhang, B.: Relevance feedback in region-based image retrieval. IEEE Trans. Circuits Syst. Video Technol. 14(5), 672–681 (2004)CrossRefGoogle Scholar
  24. 24.
    Zand, M., Doraisamy, S., Halin, A.A., Mustaffa, M.R.: Texture classification and discrimination for region-based image retrieval. J. Vis. Commun. Image Represent. 26, 305–316 (2015)CrossRefGoogle Scholar
  25. 25.
    Papadopoulos, G.T., Apostolakis, K.C., Daras, P.: Gaze-based relevance feedback for realizing region-based image retrieval. IEEE Trans. Multimed. 16(2), 440–454 (2014)CrossRefGoogle Scholar
  26. 26.
    Shrivastava, N., Tyagi, V.: Region Based Image Retrieval Using Integrated Color, Texture and Shape Features. In: Information systems design and intelligent applications, pp. 309–316. Springer India, (2015)Google Scholar
  27. 27.
    Krishnamurthy, L., Kesavan, J.: An improved content based image retrieval using three region colour and straight line signatures of the image. In: Communications and Signal Processing (ICCSP), 2015 International Conference on, pp. 1919–1924. IEEE (2015)Google Scholar
  28. 28.
    Felci Rajam, I., Valli, S.: Region-based image retrieval using the semantic cluster matrix and adaptive learning. Int. J. Comput. Sci. Eng. 7(3), 239–252 (2012)CrossRefGoogle Scholar
  29. 29.
    Iqbal, K., Odetayo, M.O., James, A.: Content-based image retrieval approach for biometric security using colour, texture and shape features controlled by fuzzy heuristics. J. Comput. Syst. Sci. 78(4), 1258–1277 (2012)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Shen, G.L., Wu, X.J.: Content based image retrieval by combining color, texture and CENTRIST. In: Signal Processing (CIWSP 2013), 2013 Constantinides International Workshop on, pp. 1–4. IET (2013)Google Scholar
  31. 31.
    Li, J., Wang, J.Z.: Automatic linguistic indexing of pictures by a statistical modeling approach. IEEE Trans. Pattern Anal. Mach. Intell. 25(9), 1075–1088 (2003)CrossRefGoogle Scholar
  32. 32.
    Liu, Guang-Hai, Yang, Jing-Yu.: Content-based image retrieval using color difference histogram. Pattern Recognit. 46(1), 188–198 (2013)CrossRefGoogle Scholar
  33. 33.
    Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories. IEEE. CVPR 2004, Workshop on Generative-Model Based Vision. (2004)Google Scholar
  34. 34.
    Griffin, G., Holub, A., Perona, P.: Caltech-256 object category dataset. (2007)Google Scholar
  35. 35.
    Lin, C.H., Chen, R.T., Chan, Y.K.: A smart content-based image retrieval system based on color and texture feature. Image Vis. Comput. 27, 658–665 (2009)Google Scholar
  36. 36.
    Yildizer, E., Balci, A.M., Hassan, M., Alhajj, R.: Efficient content-based image retrieval using multiple support vector machines ensemble. Expert Syst. Appl. 39, 2385–2396 (2012)CrossRefGoogle Scholar
  37. 37.
    Rao, M.B., Rao, B.P., Govardhan, A.: CTDCIRS: Content based image retrieval system based on dominant color and texture features. Int. J. Comput. Appl. 18, 40–46 (2011)Google Scholar
  38. 38.
    Wang, C., Zhang, B., Qin, Z., Xiong, J.:Spatial weighting for bag-of-features based image retrieval. In: Integrated uncertainty in knowledge modelling and decision making, pp. 91–100. Springer, New York (2013)Google Scholar
  39. 39.
    ElAlami, M.E.: A novel image retrieval model based on the most relevant features. Knowl. Based Syst. 24(1), 23–32 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Computer ScienceBahauddin Zakariya UniversityMultanPakistan
  2. 2.Faculty of ITUniversity of Central PunjabLahorePakistan

Personalised recommendations