Advertisement

Cluster Computing

, Volume 21, Issue 1, pp 15–28 | Cite as

Harmonized memory system for object-based cloud storage

  • Su-Kyung Yoon
  • Young-Sun Youn
  • Min-Ho Son
  • Shin-Dug KimEmail author
Article
  • 334 Downloads

Abstract

A new storage system that integrates non-volatile with conventional memory, a harmonized memory system (HMS) for object-based cloud storage, is proposed. The system overcomes IO bottlenecks when managing large amounts of metadata and transaction logs and is composed of five modules. The first, the harmonized memory supervisor, is a translation layer for accessing the harmonized array module. It manages address translation, address mapping by page linking, and wear leveling. The second, the harmonized array module, is divided into dynamic and static areas composed of DRAM, and PCM together with NAND flash memory, respectively. The harmonized memory migration engine and data pattern predictor, which anticipates future data flow, are designed to maximize the effectiveness of the PCM array area. The harmonized logging conductor processes the log between the PCM array and NAND flash areas. Experimental results show the total execution time and energy consumption of HMS is 5.77 faster and 4.27 times lower, respectively, than the conventional DRAM-HDD model for object-based storage workloads.

Keywords

Cloud computing High performance computing Non-volatile memory Memory-only system Database system 

Notes

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (NRF-2015R1A2A2A01007668)

References

  1. 1.
    Chekam, T.T., Ennan, Z., Zhenhua, L., Yong, C., Kui, R.: On the synchronization bottleneck of openstack swift-like cloud storage systems. In: IEEE International Conference on Computer Communications, San Francisco, CA 10–15 April 2016, p. 9. IEEE Xplore (2016)Google Scholar
  2. 2.
    Gilbert, S., Lynch, N.: Brewer’s conjecture and the feasibility of consistent, available, partition-tolerant web services. ACM SIGACT News 33(2), 51–59 (2002)CrossRefGoogle Scholar
  3. 3.
    Arnold, J.: OpenStack Swift: Using, Administering, and Developing for Swift Object Storage. O’Reilly Media, Inc., New York (2014)Google Scholar
  4. 4.
    McDougall, R., Filebench: Application level file system benchmark (2014)Google Scholar
  5. 5.
    Chen, C., Yang, J., et al.: Fine-Grained Metadata Journaling on NVM. Santa Clara university, Santa Clara (2016)CrossRefGoogle Scholar
  6. 6.
    Pelley, S., Wenisch, T.F., Gold, B.T., Bridge, B.: Storage management in the nvram era. PVLDB 7(2), 121–132 (2013)Google Scholar
  7. 7.
    Kryder, M.H., Kim, C.S.: After hard drives-what comes next? IEEE Trans. Magn. 45(10), 3406–3413 (2009)CrossRefGoogle Scholar
  8. 8.
    Fang, R., Hsiao, H.I., He, B., Mohan, C., Wang, Y.: High performance database logging using storage class memory. In: IEEE 27th International Conference on Data Engineering (ICDE), 2011, pp. 1221–1231. IEEE (2011, April)Google Scholar
  9. 9.
    DeBrabant, J., Arulraj, J., Pavlo, A., Stonebraker, M., Zdonik, S., Dulloor, S.: A prolegomenon on OLTP database systems for non-volatile memory.ADMS@ VLDB (2014)Google Scholar
  10. 10.
    Huang, J., Schwan, K., Qureshi, M.K.: NVRAM-aware logging in transaction systems. Proc. VLDB Endow. 8(4), 389–400 (2014)CrossRefGoogle Scholar
  11. 11.
    Lee, D.H., Yoon, S.K., Kim, J.G., Weems, C.C., Kim, S.D.: A new memory-disk integrated system with HW optimizer. ACM Trans. Archit. Code Optim. 12(2), 11 (2015)CrossRefGoogle Scholar
  12. 12.
    Yoon, S.K., et al.: Optimized memory-disk integrated system with DRAM and nonvolatile memory. IEEE Trans. Comput. Syst. 2(2), 83–93 (2016)MathSciNetGoogle Scholar
  13. 13.
    Zheng, Q., Chen, H., Wang, Y., Zhang, J., Duan, J.: COSBench: cloud object storage benchmark. In: Proceedings of the 4th ACM/SPEC International Conference on Performance Engineering, pp. 199–210. ACM (2013, April)Google Scholar
  14. 14.
    Bellard, F.: QEMU, a Fast and portable dynamic translator. In: USENIX Annual Technical Conference, FREENIX Track, pp. 41–46. (2005, April)Google Scholar
  15. 15.
    DeBrabant, J., Pavlo, A., Tu, S., Stonebraker, M., Zdonik, S.: Anti-caching: a new approach to database management system architecture. Proc. VLDB Endow. 6(14), 1942–1953 (2013)CrossRefGoogle Scholar
  16. 16.
    Chen, S., Gibbons, P.B., Nath, S.: Rethinking database algorithms for phase change memory. In: CIDR, pp. 21–31. (2011, January)Google Scholar
  17. 17.
    Chen, S., Gibbons, P.B., Mowry, T.C., Valentin, G.: Fractal prefetching B+-trees: optimizing both cache and disk performance. In: SIGMOD (2002)Google Scholar
  18. 18.
    Kannan, S. et al.: pVM—Persistent Virtual Memory for Efficient Capacity Scaling and Object Storage. EuroSys (2016)Google Scholar
  19. 19.
    Takatsu, F., et al.: Design of object storage using openNVM for high-performance distributed file system. J. Inf. Process. 24(5), 824–833 (2016)Google Scholar
  20. 20.
    Aye, K.N., Chandra, R.: A platform for big data analytics on distributed scale-out storage system. Int. J. Big Data Intell. 2(2), 127–141 (2015)CrossRefGoogle Scholar
  21. 21.
    Parankar, R., Dulluri, S.: Automated validation of structured large databases: an illustration of material code bulk validation. Int. J. Big Data Intell. 3(1), 38–50 (2016)CrossRefGoogle Scholar
  22. 22.
    Airman, A. et al.: Scalable object storage with resource reservations and dynamic load balancing. In: IEEE International Conference on Networking, Architecture and Storage (NAS) (2016)Google Scholar
  23. 23.
    Brunelle, A.D.: Block I/O layer tracing: blktrace. HP, Gelato-Cupertino, CA, USA (2006)Google Scholar
  24. 24.
    Zhang, N., Kant, C.: Building cost-effective storage clouds. In: IEEE International Conference on Cloud Engineering (IC2E). IEEE (2014)Google Scholar
  25. 25.
    Kapadia, A., Rajana, K., Varma, S.: OpenStack Object Storage (Swift) Essentials. Packt Publishing Ltd, New York (2015)Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Su-Kyung Yoon
    • 1
  • Young-Sun Youn
    • 1
  • Min-Ho Son
    • 1
  • Shin-Dug Kim
    • 1
    Email author
  1. 1.Department of Computer ScienceYonsei UniversitySeoulSouth Korea

Personalised recommendations