Cluster Computing

, Volume 20, Issue 3, pp 2415–2422 | Cite as

Towards secure and flexible EHR sharing in mobile health cloud under static assumptions

  • Zhaoquan CaiEmail author
  • Hongyang Yan
  • Ping Li
  • Zheng-an Huang
  • Chongzhi Gao


Electronic health record (EHR) systems are promising in the management of individual’s health. However, before widely deployed in practical applications, EHR systems have to tackle the privacy and efficiency challenges. Most of existing EHR sharing schemes suffer from severe efficiency drawbacks, resulting in inapplicability in mobile EHR system. Furthermore, the security assumptions in the previous schemes are usually based on non-static assumptions. In this paper, we propose a flexible EHR sharing scheme supporting offline encryption of EHR and outsourced decryption of EHR ciphertexts in mobile cloud computing. The proposed scheme is proven secure in the random oracle model under the static decisional bilinear Diffie–Hellman assumption. In our EHR sharing system, an EHR owner only need one multiplication in bilinear groups to generate the final EHR ciphertexts based on the offline ciphertexts computation, and an EHR user can easily decrypt the EHR cipheretext without requiring bilinear pairing operations based on the transformed ciphertexts from the EHR cloud. Our EHR sharing scheme allows access structures encoded in linear secret sharing schemes. Performance comparisons indicate that our scheme is very suitable for mobile health clouds.


Mobile health Privacy Attribute-based encryption Offline encryption Outsourcing 



This work was supported by the National Natural Science Foundation of China (Grant No. 61370185) and the Guangzhou scholars project for universities of Guangzhou (No. 1201561613).


  1. 1.
    Vaquero, L., Merino, L., Caceres, J., Lindner, M.: A break in the clouds: towards a cloud definition. ACM SIGCOMM Comput. Commun. Rev. 39(1), 50–55 (2008)CrossRefGoogle Scholar
  2. 2.
    Fox, A., Griffith, R., Joseph, A., Katz, R.: Above the clouds: a Berkeley view of cloud computing. Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Report No. UCB/EECS-2009-28(13) (2009)Google Scholar
  3. 3.
    Fu, Z.J., Sun, X.M., Liu, Q., Zhou, L., Shu, J.G.: Achieving efficient cloud search services: multi-keyword ranked search over encrypted cloud data supporting parallel computing. IEICE Trans. Commun. E98–B(1), 190–200 (2015)CrossRefGoogle Scholar
  4. 4.
    Xia, Z.H., Wang, X.H., Sun, X.M., Wang, Q.: A secure and dynamic multi-keyword ranked search scheme over encrypted cloud data. IEEE Trans. Parallel Distrib. Syst. 27(2), 340–352 (2015)CrossRefGoogle Scholar
  5. 5.
    Shen, J., Tan, H.W., Wang, J., Wang, J.W., Lee, S.Y.: A novel routing protocol providing good transmission reliability in underwater sensor networks. J. Intern. Technol. 16(1), 171–178 (2015)Google Scholar
  6. 6.
    Guo, P., Wang, J., Li, B., Lee, S.Y.: A variable threshold-value authentication architecture for wireless mesh networks. J. Intern. Technol. 15(6), 929–936 (2014)Google Scholar
  7. 7.
    Ren, Y.J., Shen, J., Wang, J., Han, J., Lee, S.Y.: Mutual verifiable provable data auditing in public cloud storage. J. Intern. Technol. 16(2), 317–323 (2015)Google Scholar
  8. 8.
    Fu, Z.J., Ren, K., Shu, J.G., Sun, X.M., Huang, F.X.: Enabling personalized search over encrypted outsourced data with efficiency improvement. IEEE Trans. Parallel Distrib. Syst.(2015). doi: 10.1109/TPDS.2015.2506573
  9. 9.
    Linder, J., Ma, J., Bates, D.W., Middleton, B., Stafford, R.S.: Electronic health record use and the quality of ambulatory care in the United States. Arch. Intern. Med. 167(13), 1400–1405 (2007)CrossRefGoogle Scholar
  10. 10.
    Tang, P.C., Ash, J.S., Bates, D.W.: Personal health records: definitions, benefits, and strategies for overcoming barriers to adoption. J. Am. Med. Inform. Assoc. 13(2), 121–126 (2005)CrossRefGoogle Scholar
  11. 11.
    AHIMA e-HIM Personal Health Record Work Group: Practice brief. The role of the personal health record in the EHR. J. AHIMA/Am. Health Inform. Manag. Assoc. 76(7), 64A–64D (2005)Google Scholar
  12. 12.
    Li, J., Huang, X.Y., Li, J.W., Chen, X.F., Xiang, Y.: Securely outsourcing attribute-based encryption with checkability. IEEE Trans. Parallel Distrib. Syst. 25(8), 2201–2210 (2014)CrossRefGoogle Scholar
  13. 13.
    Sahai, A., Waters, B.: Fuzzy identity based encryption. In: EUROCRYPT. LNCS vol. 3494. Springer, Dordrecht, pp. 457–473Google Scholar
  14. 14.
    Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: CRYPTO. LNCS vol. 2139. Springer, Dordrecht, pp. 213–229Google Scholar
  15. 15.
    Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute based encryption for fine-grained access control of encrypted data. In: ACM conference on computer and communications security, pp. 99–112 (2006)Google Scholar
  16. 16.
    Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-monotonic access structures. In: The 14th ACM Conference on Computer and Communications Security, pp. 195-203 (2007)Google Scholar
  17. 17.
    Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In: IEEE Symposium on Security and Privacy, pp. 321–334Google Scholar
  18. 18.
    Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient, and provably secure realization. In: The 14th International Conference on Practice and Theory in Public Key Cryptography, pp. 53–70. Springer, Berlin (2011)Google Scholar
  19. 19.
    Pirretti, M., Traynor, P., Mcdaniel, P.: Secure attribute-based systems. In: Proceedings of the 13th ACM Conference on Computer and Communications Security, pp. 99–112. ACM, New York (2006)Google Scholar
  20. 20.
    Li, J., Li, J.W., Chen, X.F., Jia, C.F., Lou, W.J.: Identity-based encryption with outsourced revocation in cloud computing. IEEE Trans. Comput. 64(2), 425–437 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Boldyreva, A., Goyal, V., Kumar, V.: Identity-based encryption with efficient revocation. In: Proceedings of the 15th ACM Conference on Computer and Communications Cecurity, pp. 417–426. ACM, New York (2008)Google Scholar
  22. 22.
    Yu, S., Wang, C., Ren, K.: Attribute based data sharing with attribute revocation. In: Proceedings of the 5th ACM Symposium on Information, Computer and Communications Security, pp. 261–270. ACM, New York (2010)Google Scholar
  23. 23.
    Wen, X.Z., Shao, L., Xue, Y., Fang, W.: A rapid learning algorithm for vehicle classification. Inform. Sci. 295(1), 395–406 (2015)CrossRefGoogle Scholar
  24. 24.
    Lewis, N., Bayu, A.T., Youngho, P., Kyung, H.R.: A fine-grained privacy preserving protocol over attribute based access control for VANETs. J. Wirel. Mobile Netw. Ubiquitous Comput. Dependable Appl. 6(2), 98–112 (2015)Google Scholar
  25. 25.
    Li, J., Chen, X.F., Li, M.Q., Li, J.W., Lee, P., Lou, W.J.: Secure deduplication with efficient and reliable convergent key management. IEEE Trans. Parallel Distrib. Syst. 25(6), 1615–1625 (2014)CrossRefGoogle Scholar
  26. 26.
    Ramu, G., Eswara Reddy, B.: Secure architecture to manage EHRs in cloud using SSE and ABE. Health Technol. 5, 195–205 (2015)CrossRefGoogle Scholar
  27. 27.
    Qin, Bo, Deng, Hua, Qianhong, Wu, Domingo-Ferrer, Josep, Naccache, David, Zhou, Yunya: Flexible attribute-based encryption applicable to secure e-healthcare records. Int. J. Inform. Secur. 14(6), 499–511 (2015)CrossRefGoogle Scholar
  28. 28.
    Narayan, S., Gagn, M., Safavi-Naini, R.: Privacy preserving EHR system using attribute-based infrastructure. In: Proceedings of the 2nd ACM Cloud Computing Security Workshop 2010, pp. 47–52 (2010)Google Scholar
  29. 29.
    Beimel, A.: Secure schemes for secret sharing and key distribution. Ph.D. Thesis, Technion-Israel Institute of technology, Faculty of computer science (1996)Google Scholar
  30. 30.
    Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient, and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) Public Key Cryptography-PKC 2011, pp. 53–70. Springer, Berlin (2011)CrossRefGoogle Scholar
  31. 31.
    Gritti, C., Susilo, W., Plantard, T., Liang, K., Wong, D.S.: J. Wirel. Mobile Netw. Ubiquitous Comput. Dependable Appl. 5(4), 3–28 (2014)Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Zhaoquan Cai
    • 1
    Email author
  • Hongyang Yan
    • 2
  • Ping Li
    • 3
  • Zheng-an Huang
    • 3
  • Chongzhi Gao
    • 3
  1. 1.Huizhou UniversityHuizhouChina
  2. 2.Nankai UniversityTianjinChina
  3. 3.Guangzhou UniversityGuangzhouChina

Personalised recommendations