Cluster Computing

, Volume 19, Issue 3, pp 1227–1242 | Cite as

Incorporating service and user information and latent features to predict QoS for selecting and recommending cloud service compositions

  • Raed Karim
  • Chen Ding
  • Ali Miri
  • Md Shahinur Rahman
Article

Abstract

The rapid growth of published cloud services in the Internet makes the service selection and recommendation a challenging task for both users and service providers. In cloud environments, software re services collaborate with other complementary services to provide complete solutions to end users. The service selection is performed based on QoS requirements submitted by end users. Software providers alone cannot guarantee users’ QoS requirements. These requirements must be end-to-end, representing all collaborating services in a cloud solution. In this paper, we propose a prediction model to compute end-to-end QoS values for vertically composed services which are composed of three types of cloud services: software (SaaS), infrastructure (IaaS) and data (DaaS) services. These values can be used during the service selection and recommendation process. Our model exploits historical QoS values and cloud service and user information to predict unknown end-to-end QoS values of composite services. The experiments demonstrate that our proposed model outperforms other prediction models in terms of the prediction accuracy. We also study the impact of different parameters on the prediction results. In the experiments, we used real cloud services’ QoS data collected using our developed QoS monitoring and collecting system.

Keywords

Cloud-based software service selection QoS prediction Vertical cloud service composition Service similarity Tensor factorization Latent features 

References

  1. 1.
    Colombus, L.: Roundup of cloud computing forecast and market estimates. http://www.forbes.com/ (2015)
  2. 2.
    Kritikos, K., Plexousakis, D.: Mixed-integer programming for QoS-based web service matchmaking. IEEE Trans. Serv. Comput. 2(2), 122–139 (2009)CrossRefGoogle Scholar
  3. 3.
    Rette, R., Fehling, C., Karastoyanova, D., Leymann, F.: Schleicher: combining horizontal and vertical composition of services. Serv. Oriented Comput. Appl. 6(2), 117–130 (2012)CrossRefGoogle Scholar
  4. 4.
    Zheng, Z., Wu, X., Zhang, Y., Lyu, M., Wang, J.: QoS ranking prediction for cloud services. IEEE Trans. Parallel Distrib. Syst. 24(6), 1213–1222 (2013)CrossRefGoogle Scholar
  5. 5.
    Greg, S.K., Versteeg, R., Buyya, R.: SMICloud: a framework for computing and ranking cloud services. In: Proceedings of the IEEE Interational Conference on Utility and Cloud Computing, pp. 529–534 (2011)Google Scholar
  6. 6.
    Braubach, L., Jandar, K., Pokhar, A.: A middleware for managing non-functional requirements in cloud PaaS. In: Proceedings of the IIEEE International Conference on Cloud and Autonomic Computing, pp. 83–92 (2014)Google Scholar
  7. 7.
    Karim, R., Ding, C., Miri, A.: End-to-end QoS prediction of vertical service composition in the cloud. In: Proceedings of the IEEE CLOUD, pp. 229–236 (2015)Google Scholar
  8. 8.
    Jannach, D., Zanker, M., Felfering, A., Friedrich, G.: Recommender Systems. Cambridge University Press, New york (2011)Google Scholar
  9. 9.
    Lo, W., Yin, J., Deng, S., Li, Y., Wu, Z.: Collaborative web service QoS prediction with location-based regularization. In: Proceedings of the IEEE International Conference on Web Services, pp. 464–471 (2012)Google Scholar
  10. 10.
    Lo, W., Yin, J., Deng, S., Li, Y., Wu, Z.: An extended matrix factorization approach for QoS prediction in service selection. In: Proceedings of the IEEE International Conference on Services Computing, pp. 162–169 (2012)Google Scholar
  11. 11.
    Zheng, Z., Ma, H., Lyu, M.R.: Collaborative web services QoS prediction via neighborhood integrated matrix factorization. IEEE Trans. Serv. Comput. 6(3), 289–299 (2013)Google Scholar
  12. 12.
    Jaccard, P.: The distribution of the flora in the alpine zone. New Phytol. 11(2), 37–55 (1912)CrossRefGoogle Scholar
  13. 13.
    Karim, R., Ding, C., Miri, A.: End-to-end performance prediction. In: Proceedings of the IEEE International Symposium on Service-Oriented System Engineering, pp. 69–77 (2015)Google Scholar
  14. 14.
    Acar, E., Yener, B.: Unsupervised multiway data analysis: a literature survey. IEEE Trans. Knowl. Data Eng. 21(1), 6–20 (2009)CrossRefGoogle Scholar
  15. 15.
    Zhang, Y., Zheng, Z., Lyn, M.R.: WSPred: a time-aware personalized QoS prediction framework for web services. In: Proceedings of the IEEE International Symposium on Software Reliability Engneering, pp. 210–219 (2011)Google Scholar
  16. 16.
    Zheng, Z., Ma, H., Lyu, M.R.: QoS-aware web service recommendation by collaborative filtering. IEEE Trans. Serv. Comput. 4(2), 140–152 (2011)CrossRefGoogle Scholar
  17. 17.
    Sun, H., Zheng, Z., Chen, J., Lyu, M.R.: Personalized web service recommendation via normal recovery collaborative filtering. IEEE Trans. Serv. Comput. 6(4), 573–579 (2013)CrossRefGoogle Scholar
  18. 18.
    Sun, H., Zheng, Z., Chen, J., Lyu, M.R.: NRCF: a novel collaborative filtering method for service recommendation. In: Proceedings of the IEEE International Conference on Web Services, pp. 702–703 (2011)Google Scholar
  19. 19.
    Wu, J., Chen, L., Feng, Y., Zheng, Z., Zhou, M.C., Wu, Z.: Predicting quality of service for selection by neighborhood-based collaborative filtering. IEEE Trans. Syst. Man Cybern.: Syst. 43(2), 428–439 (2013)CrossRefGoogle Scholar
  20. 20.
    Zhu, P., Zheng, J., Xu, Z.J., Lyu, M.R.: Location-based hierarchical matrix factorization for web service recommendation. In: Proceedings of the IEEE International Conference on Web Services, pp. 297–304 (2014)Google Scholar
  21. 21.
    Tang, M., Jiang, Y., Liu, J., Liu, X.: Location-aware collaborative filtering for QoS-based service recommendation. In: Proceedings of the IEEE International Conference on Web Services, pp. 202–209 (2012)Google Scholar
  22. 22.
    Lo, W., Yin, J., Wu, Z.: Efficient web service QoS prediction using neighborhood matrix factorization. Eng. Appl. Artif. Intell. 38, 14–23 (2015)CrossRefGoogle Scholar
  23. 23.
    Xu, Y., Yin, J., Lo, W., Wu, Z.: Personalized location-aware QoS prediction for web services using probablistics matrix factorization. WISE 8180, 229–242 (2013)Google Scholar
  24. 24.
    Zhang, W., Sun H., Liu X., Guo X.: Incorporating invocation time in predicting web service QoS via triadic farcorization. In: Proceedings of the IEEE International Conference on Web Services, pp. 145–152 (2014)Google Scholar
  25. 25.
    Zhang, Y., Zheng, Z., Lyu, M.R.: Exploring latent features for memeory-based QoS prediction in cloud computing. In: Proceedings of the IEEE International Symposium on Reliable Distributed Systems, pp. 1–10 (2011)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Raed Karim
    • 1
  • Chen Ding
    • 1
  • Ali Miri
    • 1
  • Md Shahinur Rahman
    • 1
  1. 1.Ryerson UniversityTorontoCanada

Personalised recommendations