Advertisement

Cluster Computing

, Volume 19, Issue 2, pp 699–708 | Cite as

RETRACTED ARTICLE: The model for improving big data sub-image retrieval performance using scalable vocabulary tree based on predictive clustering

  • Quan-Dong FengEmail author
  • Miao Xu
  • Xin Zhang
Article

Abstract

Scalable vocabulary tree (SVT) is a data compression structure which gains scalable visual vocabularies from hierarchical k-means clustering of local image features. Due to both high robustness in data retrieval and great potentials to process huge data, it has become one of the state-of-the-art methods building on the bag-of-features. However, such bag-of-words representations mainly suffer from two limitations. The paper gives a performance research of re-ranking in sub-image retrieval using SVT which is built from local Speed Up Robust Features descriptors. Firstly, the paper gives a study on retrieval performance using different single layers of the tree, which tells it divides data too coarsely for low layers with a small quantity of leaf nodes, while too finely for the 6-th layer with too many leaf nodes. Then using the best selected layer, the authors give a comparative analysis with popular advanced re-ranking strategies in the existing literatures. Finally, the authors propose a weighted score method that calculates matching score from dominating layers. The experimental results prove that the weighted score method achieves almost optimal retrieval performance when using SVT for data representations. Meanwhile, it almost doesn’t increase any computational complexity, and can be implemented easily.

Keywords

Scalable vocabulary tree Image retrieval Weighted score Re-ranking 

Notes

Acknowledgments

This work was supported by Beijing Higher Education Young Elite Teacher Project (YETP0769), the Fundamental Research Funds for the Central Universities (NOs. YX2011-16, YX2014-08 and YX2015-06), and the National Natural Science Foundation of China (Grant Nos .61571002, 61179034 and 61370193).

References

  1. 1.
    Nister, D., Stewenius, H.: Scalable recognition with a vocabulary tree. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2161–2168 (2006)Google Scholar
  2. 2.
    Jegou, H., Douze, M., Schmid, C.: Improving bag-of-features for large scale image search. Int. J. Comput. Vis. 87(3), 316–336 (2010)CrossRefGoogle Scholar
  3. 3.
    Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with large vocabularies and fast spatial matching. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007)Google Scholar
  4. 4.
    Jegou, H., Douze, M., Schmid, C.: Hamming embedding and weak geometry consistency for large scale image search. In: Computer Vision - ECCV 2008, Lecture Notes in Computer Science, pp. 304–317 (2008)Google Scholar
  5. 5.
    Gao, K., Lin, S., Guo, J., Zhang, D., Zhang, Y., Wu, Y.: Object retrieval based on spatially frequent items with informative patches. In: 2008 IEEE International Conference on Multimedia and Expo, pp. 1305–1308 (2008)Google Scholar
  6. 6.
    Wu, Z., Ke, Q., Isard, M., Sun, J.: Bundling features for large scale partial-duplicate web image search. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 25–32 (2009)Google Scholar
  7. 7.
    Jegou, H., Harzallah, H., Schmid, C.: A contextual dissimilarity measure for accurate and efficient image search. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 1–8 (2007)Google Scholar
  8. 8.
    Kang, H., Hebert, M., Kanade, T.: Image matching with distinctive visual vocabulary. In: 2011 IEEE Workshop on Applications of Computer Vision (WACV), pp. 402–409 (2011)Google Scholar
  9. 9.
    Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Lost in quantization: Improving particular object retrieval in large scale image databases. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)Google Scholar
  10. 10.
    Fulkerson, B., Vedaldi, A., Soatto, S.: Localizing objects with smart dictionaries. In: Computer Vision - ECCV 2008 Lecture Notes in Computer Science, pp. 179–192 (2008)Google Scholar
  11. 11.
    Liu, Y., Zhang, D., Lu, G., Ma, W.-Y.: A survey of content-based image retrieval with high-level semantics. Pattern Recognit. 40(1), 262–282 (2007)CrossRefzbMATHGoogle Scholar
  12. 12.
    Philbin, J.: Scalable object retrieval in very large image collections. Ph.D. thesis, University of Oxford, Oxford, UK, (2010)Google Scholar
  13. 13.
    Ke, Y., Sukthankar, R.: Pca-sift: a more distinctive representation for local image descriptors. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 506–513 (2004)Google Scholar
  14. 14.
    Bay, H., Tuytelaars, T., Van Gool, L.: Surf: speeded up robust features. In: IEEE Conference on Computer Vision, vol. 3951, pp. 404–417 (2006)Google Scholar
  15. 15.
    Schindler, G., Brown, M., Szeliski, R.: City-scale location recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–7 (2007)Google Scholar
  16. 16.
    Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with large vocabularies and fast spatial matching. In: IEEE Conference on Computer Vision and Pattern Recognition pp. 1–8 (2007)Google Scholar
  17. 17.
    Sivic, J., Zisserman, A.: Video google:a text retrieval approach to obeject matching in video, In: IEEE C onference on Computer Vision, vol. 2, pp. 1470–1477 (2003)Google Scholar
  18. 18.
    Nister, D., Stewenius, H.: Scalable recognition with a vocabulary tree. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 2161–2168 (2006)Google Scholar
  19. 19.
    Ooi, B.C., McDonell, K.J., Sacks-Davis, R.: Spatial kd-tree: an indexing mechanism for spatial databases. In: IEEE COMPSAC, pp. 433–438 (1987)Google Scholar
  20. 20.
    Guttman, A.: R-trees: a dynamic index structure for spatial searching. ACM 14(2), 47–57 (1984)Google Scholar
  21. 21.
    Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing scheme based on p-stable distributions. In: Proceedings of the Twentieth Annual Symposium on Computational Geometry, pp. 253–262 (2004)Google Scholar
  22. 22.
    Silpa-Anan, C., Hartley, R.: Optimised kd-trees for fast image descriptor matching. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)Google Scholar
  23. 23.
    Ke, Y., Sukthankar, R., Huston, L.: Efficient near-duplicate detection and sub-image retrieval. ACM Multimed. 4(1), 869–876 (2004)Google Scholar
  24. 24.
    Sivic, J., Zisserman, A.: Video google: a text retrieval approach to object matching in video. In: IEEE Conference on Computer Vision, vol. 2, pp. 1470–1477 (2003)Google Scholar
  25. 25.
    Chen, Y., Sheng, Y.: Vocabulary tree based image retrieval. Comput. Eng. 36(6), 189–195 (2010)Google Scholar
  26. 26.
    Huo, X.: Vocabulary tree based image retrieval technology research. Master’s thesis, Northwest University in Xi’an (2011)Google Scholar
  27. 27.
    Sivic, J., Zisserman, A.: Video google:a text retrieval approach to object matching in video. In: IEEE Conference on Computer Vision, vol. 2, pp. 1470–1477 (2003)Google Scholar
  28. 28.
    Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 3, 610–621 (1973)CrossRefGoogle Scholar
  29. 29.
    Manjunath, B.S., Ma, W.Y.: Texture features for browsing and retrieval of image data. IEEE Trans. Pattern Anal. Mach. Intell. 18, 837–842 (1996)CrossRefGoogle Scholar
  30. 30.
    Mandal, M.K., Panchanathan, S., Aboulnasr, T.: Fast wavelet histogram techniques for image indexing. Comput. Vis. Image Underst. 75, 99–110 (1999)CrossRefGoogle Scholar
  31. 31.
    Zhang, D., Wong, A., Indrawan, M., Lu, G.: Content-based image retrieval using Gabor texture features, In: IEEE International Symposium on Multimedia Information Processing, pp. 392–395. Sydney, Australia (2000)Google Scholar
  32. 32.
    Abrishami-Moghadam, H., Khajoie, T.T., Rouhi, A.H., Saadatmand-T, M.: Wavelet correlogram: a new approach for image indexing and retrieval. Pattern Recogn. 38, 2506–2518 (2005)CrossRefGoogle Scholar
  33. 33.
    Saadatmand-Tarzjan, M., Abrishami Moghadam, H.: Enhanced wavelet correlogram methods for image indexing and retrieval. In: IEEE International Conference on Image Processing (ICIP 2005), vol. 1, pp. 11–14. Genoa (2005)Google Scholar
  34. 34.
    Subrahmanyam, M., Gonde, A.B., Maheshwari, R.P.: Color and texture features for image retrieval. In: Proceedings of the IEEE International Advance Computing Conference (IACC 2009), pp. 1411–1416. Patiala (2009)Google Scholar
  35. 35.
    Gonde, A.B., Maheshwari, R.P., Balasubramanian, R.: Multiscale ridgelet transform for content based image retrieval, In: Proceedings of the IEEE 2nd International Advance Computing Conference (IACC 2010), pp. 139–144. Patiala (2010)Google Scholar
  36. 36.
    Luo, X., Xu, Z., Yu, J., Chen, X.: Building association link network for semantic link on web resources. IEEE Trans. Autom. Sci. Eng. 8(3), 482–494 (2011)CrossRefGoogle Scholar
  37. 37.
    Hu, C., Xu, Z., et al.: Semantic link network based model for organizing multimedia big data. IEEE Trans. Emerg. Top. Comput. 2(3), 376–387 (2014)CrossRefGoogle Scholar
  38. 38.
    Xu, Z., et al.: Crowdsourcing based description of urban emergency events using social media big data. IEEE Trans. Cloud Comput. doi: 10.1109/TCC.2016.2517638
  39. 39.
    Xu, Z., et al.: Knowle: a semantic link network based system for organizing large scale online news events. Future Gener. Comput. Syst. 43–44, 40–50 (2015)CrossRefGoogle Scholar
  40. 40.
    Xu, Z., et al.: Semantic based representing and organizing surveillance big data using video structural description technology. J. Syst. Softw. 102, 217–225 (2015)CrossRefGoogle Scholar
  41. 41.
    Bay, H., Ess, A., Tuytelaars, T., Gool, V.: Speeded-Up Robust Features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)CrossRefGoogle Scholar
  42. 42.
  43. 43.
  44. 44.
    McCandless, M., Hatcher, E., Gospodnetic, O.: Lucene in action, 2nd edn. Manning Publications, Greenwich (2010)Google Scholar
  45. 45.
    Blockeel, H.: Top-down induction of first order logical decision trees. Ph.D. thesis, Katholieke Universiteit Leuven, Leuven (1998)Google Scholar
  46. 46.
    Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)CrossRefzbMATHGoogle Scholar
  47. 47.
    Bellavia, F., Tegolo, D., Trucco, E.: Improving SIFT-based descriptors stability to rotations. In: 2010 20th International Conference on Pattern Recognition (ICPR), pp. 3460–3463 (2010)Google Scholar
  48. 48.
    Zhou, W., Lu, Y., Li, H., Song, Y., Tian, Q.: Spatial coding for large scale partial-duplicate web image search. Sci. Technol. 511–520 (2010)Google Scholar
  49. 49.
    Grauman, K., Darrell, T.: The pyramid match kernel: discriminative classification with sets of image features. In: Tenth IEEE International Conference on Computer Vision, vol. 2, pp. 1458–1465 (2005)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.College of ScienceBeijing Forestry UniversityBeijingChina
  2. 2.School of Electrical Engineering and AutomationTianjin Polytechnic UniversityTianjinChina

Personalised recommendations