Cluster Computing

, Volume 19, Issue 1, pp 557–566 | Cite as

Monte Carlo simulations of settlement dynamics in GPUs

  • Emmanuel N. Millán
  • Silvana B. Goirán
  • María Fabiana Piccoli
  • Carlos García Garino
  • Julieta N. Aranibar
  • Eduardo M. Bringa


Recently, a Monte Carlo model was proposed in order to simulate settlement dynamics in drylands, including several environmental factors, and it was implemented as a serial CPU code. In this work we present a parallel implementation of that code using graphics processing units (GPU) and NVIDIA CUDA. The code was tested with two experiments, a Baseline case and a Realistic case. We take advantage of the GPU architecture to obtain significant speedups: \(\sim \)8\(\times \) to \(\sim \)20\(\times \) with the Baseline case in a NVIDIA Tesla C2050 versus a Phenom 1055T CPU. The Realistic case obtained \(\sim \)80\(\times \) of speedup in the same hardware. The GPU performance of the code will allow the inclusion of additional factors affecting settlements and large grid sizes for detailed environmental degradation models.


Monte Carlo Parallel processing General purpose graphics processing units Settlement dynamics 



We acknowledge support from CONICET, ANPCyT grants (PICT-PRH-0092 and PICT-PRH 2703), and a SeCTyP UNCuyo grant. This work used the Mendieta Cluster from CCAD-UNC, that is part of SNCAD MinCyT, Argentina. We thank the anonymous reviewers for comments and suggestions which helped to improve the manuscript.


  1. 1.
    Asner, G.P., Elmore, A.J., Olander, L.P., Martin, R.E., Harris, A.T.: Grazing systems, ecosystem responses, AND global change. Annu. Rev. Environ. Resourc. 29(1), 261–299 (2004). doi: 10.1146/ CrossRefGoogle Scholar
  2. 2.
    Binder, K.: Monte Carlo and Molecular Dynamics Simulations in Polymer Science, vol. 20. Oxford University Press, New York (1995)Google Scholar
  3. 3.
    Block, B., Virnau, P., Preis, T.: Multi-GPU accelerated multi-spin Monte Carlo simulations of the 2D ising model. Comput. Phys. Commun. 181(9), 1549–1556 (2010). doi: 10.1016/j.cpc.2010.05.005 CrossRefzbMATHGoogle Scholar
  4. 4.
    Bura, S., Gurin-Pace, F., Mathian, H., Pumain, D., Sanders, L.: Multiagent systems and the dynamics of a settlement system. Geogr. Anal. 28(2), 161–178 (1996). doi: 10.1111/j.1538-4632.1996.tb00927.x CrossRefGoogle Scholar
  5. 5.
    Chan, V.W.K. (ed.): Theory and Applications of Monte Carlo Simulations. InTech (2013). doi: 10.5772/45892
  6. 6.
    Corvalan, C., Hales, S., McMichael, A.J.: Ecosystems and Human Well-Being: Health Synthesis. World Health Organization, Geneva (2005)Google Scholar
  7. 7.
    Ferrero, E.E., De Francesco, J.P., Wolovick, N., Cannas, S.A.: q-State potts model metastability study using optimized GPU-based Monte Carlo algorithms. Comput. Phys. Commun 183(8), 1578–1587 (2012). doi: 10.1016/j.cpc.2012.02.026 MathSciNetCrossRefGoogle Scholar
  8. 8.
    Goirán, S., Aranibar, J., Gomez, M.: Heterogeneous spatial distribution of traditional livestock settlements and their effects on vegetation cover in arid groundwater coupled ecosystems in the Monte desert (argentina). J. Arid Environ. 87, 188–197 (2012). doi: 10.1016/j.jaridenv.2012.07.011 CrossRefGoogle Scholar
  9. 9.
    Graham, S.L., Kessler, P.B., Mckusick, M.K.: Gprof. Proceedings of the 1982 SIGPLAN Symposium on Compiler Construction—SIGPLAN 82 (1982). doi: 10.1145/800230.806987
  10. 10.
    Harris, M., et al.: Optimizing parallel reduction in cuda. NVIDIA Dev. Technol. 2(4) (2007)Google Scholar
  11. 11.
    Herrero, M., Thornton, P.K.: Livestock and global change: emerging issues for sustainable food systems. Proc. Natl. Acad. Sci. 110(52), 20878–20881 (2013). doi: 10.1073/pnas.1321844111
  12. 12.
    Hong, S., Kim, H.: An analytical model for a GPU architecture with memory-level and thread-level parallelism awareness. SIGARCH Comput. Archit. News 37(3), 152 (2009). doi: 10.1145/1555815.1555775 MathSciNetCrossRefGoogle Scholar
  13. 13.
    Kohler, T.A., Bocinsky, R.K., Cockburn, D., Crabtree, S.A., Varien, M.D., Kolm, K.E., Smith, S., Ortman, S.G., Kobti, Z.: Modelling prehispanic pueblo societies in their ecosystems. Ecol. Model. 241, 30–41 (2012). doi: 10.1016/j.ecolmodel.2012.01.002 CrossRefGoogle Scholar
  14. 14.
    Millán, E., Goirán, S.B., Aranibar, J., Forconesi, L., García Garino, C., Bringa, E.M.: Evaluating the importance of environmental factors on livestock settlement spatial distribution in the monte desert with a Monte Carlo based model: settlement dynamics in drylands (SeDD). J. Arid Environ. (2015). arXiv:1507.07886. In revision
  15. 15.
    Nickolls, J., Buck, I., Garland, M., Skadron, K.: Scalable parallel programming with CUDA. Queue 6(2), 40 (2008). doi: 10.1145/1365490.1365500
  16. 16.
    NVIDIA: NVIDIA CUDA C Programming Guide 4.2 (2012)Google Scholar
  17. 17.
  18. 18.
    Ryoo, S., Rodrigues, C.I., Stone, S.S., Baghsorkhi, S.S., Ueng, S.Z., Stratton, J.A., Hwu, W.M.W.: Program optimization space pruning for a multithreaded gpu. In: Proceedings of the Sixth Annual IEEE/ACM International Symposium on Code Generation and Optimization—CGO 08 (2008). doi: 10.1145/1356058.1356084
  19. 19.
    Volkov, V.: Better performance at lower occupancy. In: Proceedings of the GPU Technology Conference, GTC 10 (2010)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Emmanuel N. Millán
    • 1
  • Silvana B. Goirán
    • 2
  • María Fabiana Piccoli
    • 3
  • Carlos García Garino
    • 4
  • Julieta N. Aranibar
    • 2
  • Eduardo M. Bringa
    • 5
  1. 1.CONICET, FCEN and ITICUniversidad Nacional de CuyoMendozaArgentina
  2. 2.Instituto Argentino de Nivologia, Glaciologia y Ciencias Ambientales (IANIGLA), CONICET, CCT-Mendoza, Argentina and Facultad de Ciencias Exactas y NaturalesUniversidad Nacional de CuyoMendozaArgentina
  3. 3.Universidad Nacional de San LuisSan LuisArgentina
  4. 4.ITICUniversidad Nacional de CuyoMendozaArgentina
  5. 5.CONICET and Facultad de Ciencias Exactas y NaturalesUniversidad Nacional de CuyoMendozaArgentina

Personalised recommendations