Cluster Computing

, Volume 18, Issue 1, pp 385–402 | Cite as

Energy-efficient data replication in cloud computing datacenters

  • Dejene Boru
  • Dzmitry KliazovichEmail author
  • Fabrizio Granelli
  • Pascal Bouvry
  • Albert Y. Zomaya


Cloud computing is an emerging paradigm that provides computing, communication and storage resources as a service over a network. Communication resources often become a bottleneck in service provisioning for many cloud applications. Therefore, data replication which brings data (e.g., databases) closer to data consumers (e.g., cloud applications) is seen as a promising solution. It allows minimizing network delays and bandwidth usage. In this paper we study data replication in cloud computing data centers. Unlike other approaches available in the literature, we consider both energy efficiency and bandwidth consumption of the system. This is in addition to the improved quality of service QoS obtained as a result of the reduced communication delays. The evaluation results, obtained from both mathematical model and extensive simulations, help to unveil performance and energy efficiency tradeoffs as well as guide the design of future data replication solutions.


Cloud computing Data replication  Energy efficiency 



The authors would like to acknowledge the funding from National Research Fund, Luxembourg in the framework of ECO-CLOUD project (C12/IS/3977641).


  1. 1.
    Buyya, R., Yeo, C.S., Venugopal, S.: Market-oriented cloud computing: vision, hype, and reality for delivering IT services as computing utilities. In: IEEE International Conference on High Performance Computing and Communications (HPCC), pp. 5–13. Dalian, China, (2008).Google Scholar
  2. 2.
    Hussain, H., et al.: A survey on resource allocation in high performance distributed computing systems. Parallel Comput. 39(11), 709–736 (2013)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Hayes, B.: Cloud computing. Mag. Commun. ACM 51(7), 9–11 (2008)CrossRefGoogle Scholar
  4. 4.
    Katz, R.H.: Tech titans building boom. IEEE Spectr. 46(2), 40–54 (2009)CrossRefGoogle Scholar
  5. 5.
    Koomey, J.: Worldwide electricity used in data centers. Environ. Res. Lett. 3(3), 034008 (2008)CrossRefGoogle Scholar
  6. 6.
    Koomey, J.G.: Growth in Data center electricity uses 2005 to 2010. Analytics Press, Oakland (2011)Google Scholar
  7. 7.
    “Cloud Computing Energy Efficiency, Strategic and Tactical Assessment of Energy Savings and Carbon Emissions Reduction Opportunities for Data Centers Utilizing SaaS, IaaS, and PaaS”, Pike Research, (2010).Google Scholar
  8. 8.
    Chang, R.S., Chang, H.P., Wang, Y.T.: A dynamic weighted data replication strategy in data grids. In: IEEE/ACS International Conference on Computer Systems and Applications, pp. 414–421. (2008).Google Scholar
  9. 9.
    Brown, R., et al.: Report to congress on server and data center energy efficiency: public law 109–431. Lawrence Berkeley National Laboratory, Berkeley (2008)Google Scholar
  10. 10.
    Shang, L., Peh, L.S., Jha, N.K.: Dynamic voltage scaling with links for power optimization of interconnection networks. In: Ninth International Symposium on High-Performance Computer Architecture (HPCA), pp. 91–102. (2003).Google Scholar
  11. 11.
    Wang, Shengquan, Liu, Jun, Chen, Jian-Jia, Liu, Xue: Powersleep: a smart power-saving scheme with sleep for servers under response time constraint. IEEE J. Emerg. Sel. Top. Circuits Syst. 1(3), 289–298 (2011)Google Scholar
  12. 12.
    Horvath, T., Abdelzaher, T., Skadron, K., Liu, X.: Dynamic voltage scaling in multitier web servers with end-to-end delay control. IEEE Trans. Comput. 56(4), 444–458 (2007)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Kim, J.S., Taylor, M.B., Miller, J., Wentzlaff, D.: Energy characterization of a tiled architecture processor with on-chip networks. In: International Symposium on Low Power Electronics and Design, pp. 424–427. (2003).Google Scholar
  14. 14.
    Kliazovich, D., Pecero, J.E., Tchernykh, A., Bouvry, P., Khan, S.U., Zomaya, A.Y.: CA-DAG: communication-aware directed acyclic graphs for modeling cloud computing applications. In: IEEE International Conference on Cloud Computing (CLOUD), Santa Clara, USA, (2013).Google Scholar
  15. 15.
    Lin, B., Li, S., Liao, X., Wu, Q., Yang, S.: eStor: energy efficient and resilient data center storage. In: 2011 International Conference on Cloud and Service Computing (CSC), pp. 366–371. (2011).Google Scholar
  16. 16.
    Dong, X., El-Gorashi, T., Elmirghani, J.M.H.: Green IP over WDM networks with data centers. J. Lightwave Technol. 29(12), 1861–1880 (2011)CrossRefGoogle Scholar
  17. 17.
    Ping, F., Li, X., McConnell, C., Vabbalareddy, R., Hwang, J.H.: Towards optimal data replication across data centers. In: International Conference on Distributed Computing Systems Workshops (ICDCSW), pp. 66–71. (2011).Google Scholar
  18. 18.
    Li, W., Yang, Y., Yuan, D.: A novel cost-effective dynamic data replication strategy for reliability in cloud data centres. In: International Conference on Dependable, Autonomic and Secure Computing (DASC), pp. 496–502. (2011).Google Scholar
  19. 19.
    Kliazovich, D., Bouvry, P., Khan, S.U.: GreenCloud: a packet-level simulator of energy-aware cloud computing data centers. J. supercomput. 62(3), 1263–1283 (2012)CrossRefGoogle Scholar
  20. 20.
    Chernicoff, D.: The shortcut guide to data center energy efficiency. Realtimepublishers, New York (2009)Google Scholar
  21. 21.
    Sherwood, R., Gibby, G., Yapy, K.-K., Appenzellery, G., Casado, M., McKeowny, N., Parulkary, G.: Flowvisor: a network virtualization layer”. Technical report. Deutsche Telekom Inc. R&D Lab, Stanford University, NiciraNetworks (2009)Google Scholar
  22. 22.
    Cisco, Cisco Visual Networking Index: Forecast and Methodology, 2011–2016, May, White paper (2012)
  23. 23.
    Rasmussen, N.: Determining total cost of ownership for data center and network room infrastructure. APC White paper No.6, March (2005).Google Scholar
  24. 24.
    Electricity Information 2012, International Energy Agency, (2012).Google Scholar
  25. 25.
    Madi M.K., Hassan, S.: Dynamic replication algorithm in data grid: survey. International Conference on Network Applications, Protocols, and Services, pp. 1–7. (2008).Google Scholar
  26. 26.
    Cheng, X., Dale, C., Liu, J.: Statistics and social network of YouTube videos. In: 16th International Workshop on Quality of Service, pp. 229–238. (2008).Google Scholar
  27. 27.
    Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law distributions in empirical data. SIAM Rev. 51, 661–703 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Adamic, L.A., Huberman, B.A.: Zipf, power-laws, and pareto - a ranking tutorial. Glottometrics 3, 143–150 (2012)Google Scholar
  29. 29.
    Asur, S., Huberman, B.A., Szabo, G., Wang, C.: Trends in social media: persistence and decay. In: 5th International AAAI Conference on Weblogs and Social Media (2011).Google Scholar
  30. 30.
    Cisco Systems, Cisco Data Center Infrastructure 2.5 Design Guide Inc, Nov (2011).Google Scholar
  31. 31.
    Al-Fares, M., Loukissas, A., Vahdat, A.: A scalable, commodity data center network architecture. ACM SIGCOMM 38, 63–74 (2008)CrossRefGoogle Scholar
  32. 32.
    Bellosa, F.: The benefits of event driven energy accounting in power-sensitive systems. In: ACM SIGOPS European Workshop: beyond the PC: new challenges for the operating system, pp. 37–42. (2000).Google Scholar
  33. 33.
    Pelley, S., Meisner, D., Wenisch, T.F., VanGilder, J.W.: Understanding and abstracting total data center power. In: Workshop on Energy Efficient Design (WEED), (2009).Google Scholar
  34. 34.
    Fan, X., Weber, W.-D., Barroso, L.A.: Power provisioning for a warehouse-sized computer. In: ACM International Symposium on Computer Architecture, pp. 13–23. San Diego, (2007).Google Scholar
  35. 35.
    Server Power and Performance characteristics, available on
  36. 36.
    Chen, Y., Das, A., Qin, W.: Managing server energy and operational costs in hosting centers. In: ACM SIGMETRICS international conference on Measurement and modeling of computer systems, pp. 303–314. (2005).Google Scholar
  37. 37.
    Upadhyay, A., Balihalli, P.R., Ivaturi, S., Rao, S.: Deduplication and compression techniques in cloud design. Systems Conference (SysCon), 2012 IEEE International, vol., no., pp. 1–6. 19–22 March (2012).Google Scholar
  38. 38.
    Rashmi, K.V., Shah, N.B., Gu, D., Kuang, H., Borthakur D., Ramchandran K.: A Solution to the network challenges of data recovery in erasure-coded distributed storage systems: a study on the facebook warehouse cluster. In: Proceedings of 5\(^{th}\) USENIX conf. on Hot Topics in Storage and File Systems, Berkely, CA, USA (2013).Google Scholar
  39. 39.
    Ganesh, A., Katz, R.H.: Greening the switch. In: Conference on Power aware computing and systems, pp. 7. (2008).Google Scholar
  40. 40.
    Ricciardi, S., Careglio, D., Fiore, U., Palmieri, F., Santos-Boada, G., Sole-Pareta, J.: Analyzing local strategies for energy-efficient networking, In: IFIP International Networking Workshops (SUNSET), pp. 291–300. Springer, Berlin (2011).Google Scholar
  41. 41.
    Sivaraman, V., Vishwanath, A., Zhao, Z., Russell, C.: Profiling per-packet and per-byte energy consumption in the NetFPGA Gigabit router. In: IEEE Conference on Computer Communications (INFOCOM) Workshops, pp. 331–336. (2011).Google Scholar
  42. 42.
    Kharitonov, D.: Time-domain approach to energy efficiency: high-performance network element design. IEEE GLOBECOM Workshops, pp. 1–5. (2009).Google Scholar
  43. 43.
    Mahadevan, P., Sharma, P., Banerjee, S., Ranganathan, P.: A power benchmarking framework for network devices. In: 8th International IFIP-TC 6 Networking Conference, pp. 795–808. Aachen, Germany (2009).Google Scholar
  44. 44.
    Reviriego, P., Sivaraman, V., Zhao, Z., Maestro, J.A., Vishwanath, A., Sanchez-Macian, A., Russell, C.: An energy consumption model for energy efficient ethernet switches. In: International Conference on High Performance Computing and Simulation (HPCS), pp. 98–104. (2012).Google Scholar
  45. 45.
    Sohan, R., Rice, A., Moore, A.W., Mansley, K.: Characterizing 10 Gbps network interface energy consumption. In: IEEE 35th Conference on Local Computer Networks (LCN), pp. 268–271. (2010).Google Scholar
  46. 46.
    Agarwal, Y., Hodges, S., Chandra, R., Scott, J., Bahl, P., Gupta, R.: Somniloquy: augmenting network interfaces to reduce PC energy usage. In: 6th USENIX Symposium on Networked Systems Design and Implementation, pp. 365–380. Berkeley, USENIX Association (2009).Google Scholar
  47. 47.
    Christensen, K., Nordman, B.: Improving the Energy Efficiency of Networks: A Focus on Ethernet and End Devices. Cisco Corporation, San Jose (2006)Google Scholar
  48. 48.
    Odlyzko, A.: Data networks are lightly utilized, and will stay that way”, Technical Report Center for Discrete Mathematics & Theoretical Computer Science ACM, (1999).Google Scholar
  49. 49.
    Leland, W., Taqqu, M., Willinger, W., Wilson, D.: On the selfsimilar nature of ethernet traffic. IEEE Trans. Netw. 2(1), 1–15 (1994)CrossRefGoogle Scholar
  50. 50.
    Reviriego, P., Christensen, K., Rabanillo, J., Maestro, J.A.: An initial evaluation of energy efficient ethernet. IEEE Commun. Lett. 5(15), 578–580 (2011)CrossRefGoogle Scholar
  51. 51.
    Intel Inc., Intel Xeon Processor 5000 Sequence, available at: xeon5000 (2010)
  52. 52.
    Farrington, N., Rubow, E., Vahdat, A.: Data center switch architecture in the age of merchant silicon. In: 17th IEEE symposium on high performance interconnects (HOTI ’09), pp. 93–102. (2009).Google Scholar
  53. 53.
    Mahadevan, P., Sharma, P., Banerjee, S., Ranganathan, P.: Energy aware network operations. In: IEEE INFOCOM workshops, pp. 1–6. (2009).Google Scholar
  54. 54.
    The Network Simulator Ns2
  55. 55.
    Ghemawat, S., Gobioff, H., Leung, S.T.: The Google file system. ACM SIGOPS Oper. Syst. Rev. 37(5), 29–43 (2003)CrossRefGoogle Scholar
  56. 56.
    Shvachko, K., Hairong, K., Radia, S., Chansler, R.: The Hadoop distributed file system. In: Proceedings the 26th Symposium on Mass Storage Systems and Technologies, Incline Village, NV, USA, May 3–7, pp. 1–10. (2010).Google Scholar
  57. 57.
    Wang, Q., Kanemasa, Y., Li, J., Jayasinghe, D., Kawaba, M.: Response time reliability in cloud environments: an empirical study of n-tier applications at high resource utilization. In: Reliable Distributed Systems (SRDS), 2012 IEEE 31st Symposium on, vol., no., pp. 378,383, 8–11 Oct. (2012).Google Scholar
  58. 58.
    You, Xindong: Zhou, Li, Huang, Jie, Zhang, Jinli, Jiang, Congfeng, Wan, Jian: An energy-effective adaptive replication strategy in cloud storage system. Int. J. Appl. Math. Inf. Sci. 7(6), 2409–2419 (2013)CrossRefGoogle Scholar
  59. 59.
    Boru, D., Kliazovich, D., Granelli, F., Bouvry, P., Zomaya, A.Y.: Energy-efficient data replication in cloud computing datacenters. In: IEEE Globecom 2013 International Workshop on Cloud Computing Systems, Networks, and Applications (GC13 WS - CCSNA). Atlanta, GA, USA (2013).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Dejene Boru
    • 1
  • Dzmitry Kliazovich
    • 2
    Email author
  • Fabrizio Granelli
    • 3
  • Pascal Bouvry
    • 2
  • Albert Y. Zomaya
    • 4
  1. 1.CREATE-NETTrentoItaly
  2. 2.University of LuxembourgLuxembourgLuxembourg
  3. 3.DISI - University of TrentoTrentoItaly
  4. 4.School of Information TechnologiesUniversity of SydneyDarlingtonAustralia

Personalised recommendations