Cluster Computing

, Volume 18, Issue 1, pp 61–77 | Cite as

A semantic enhanced Power Budget Calculator for distributed computing using IEEE 802.3az

  • Hao Zhu
  • Karel van der Veldt
  • Zhiming ZhaoEmail author
  • Paola Grosso
  • Dimitar Pavlov
  • Joris Soeurt
  • Xiangke Liao
  • Cees de Laat


Energy efficiency is becoming an important requirement in more and more computing systems for optimizing resource allocation and task scheduling. By switching active copper Ethernet links to a low power model the IEEE 802.3az protocol can reduce the network energy consumption when no traffic exists. However, the effect of 802.3az heavily depends on network traffic patterns, which makes its utilization challenging in scheduling computing tasks. In this research, we examined the 802.3az technology with the goal of deploying it in distributed computing systems such as clusters. We devised an energy budget calculator that includes the energy model of 802.3az compliant Ethernet devices and supports the resource management service. We show a few practical examples of how applications can better plan their execution by integrating this knowledge in their decision strategies. We also present a solution for enhancing the calculator by using a semantic energy information system.


IEEE 802.3az Distributed computing  Energy Efficient Ethernet Power Budget Calculator 



We would like to thank the FP7 EU funded Integrated project ENVRI project (project number 283465) and the Dutch national and education network SURFnet, through the GigaPort Research on Network (RoN) project, the Dutch national program COMMIT and the NWO-funded project GreenClouds for sponsoring this research. We would also like to thank Cisco and Huawei for lending us their switches. Thanks Dr. Paul Martin from University of Edinburgh for proof reading.


  1. 1.
    Gokhale, M., Cohen, J., Yoo, A., Miller, W., Jacob, A., Ulmer, C., Pearce, R.: Hardware technologies for high-performance data-intensive computing. IEEE Comput. 41(4), 60–68 (2008)CrossRefGoogle Scholar
  2. 2.
    D-link, Green Ethernet. Accessed July 2014
  3. 3.
    IEEE Standard Associate, IEEE Std 802.3az-2010. Accessed July 2014
  4. 4.
    Pavlov, D., Soert, J., Grosso, P., Zhao, Z., van der Veldt, K., Zhu, H., de Laat, C.: Towards energy efficient data intensive computing using IEEE 802.3az. In: The 2012 International Workshop on Data-Intensive Scalable Computing Systems (DISCS) in Conjunction with the 2012 ACM/IEEE Supercomputing Conference (SC) (2012)Google Scholar
  5. 5.
    Gupta, M., Singh, S.: Greening of the Internet. Anchor Books, New York (2003)Google Scholar
  6. 6.
    Gupta, M., Grover, S., Singh, S.: A feasibility study for power management in LAN switches. In: Proceedings of the 12th IEEE International Conference on Network Protocols, pp. 361–371 (2004)Google Scholar
  7. 7.
    Gupta, M., Singh, S.: Using low-power modes for energy conservation in Ethernet LANs. In: IEEE INFOCOM - 26th IEEE International Conference on Computer Communications, pp. 2451–2455 (2007)Google Scholar
  8. 8.
    Herreria-Alonso, S., Rodriguez-Perez, M., Fernandez-Veiga, M., Lopez-Garcia, C.: Opportunistic power saving algorithms for Ethernet devices. Comput. Netw. 55(9), 2051–2064 (2011)CrossRefGoogle Scholar
  9. 9.
    Ananthanarayanan, G., Katz, R.H.: Greening the Switch. In: Proceedings of the Conference on Power Aware Computing and Systems (HotPower) (2008)Google Scholar
  10. 10.
    Reviriego, P., Hernadez, J., Larrabeiti, D., Maestro, J.A.: Burst transmission in Energy Efficient Ethernet. IEEE Internet Comput. 14(4), 50–57 (2010)Google Scholar
  11. 11.
    Cisco Systems, Inc., Cisco SG300-28 Switch. Accessed Dec 2012
  12. 12.
    Huawei S1728GWR-4P Switch. Retrieved Dec 2012
  13. 13.
  14. 14.
    Reviriego, P., Hernandez, J., Larrabeiti, D., Maestro, J.A.: Performance evaluation of energy efficient ethernet. IEEE Commun. Lett. 13(9), 697–699 (2009)Google Scholar
  15. 15.
    Mausezahn Website. Retrieved Dec 2012
  16. 16.
    Christensen, K., Florida, S., Nordman, B., Bennett, M., Berkeley, L.: IEEE 802. 3az : the road to Energy Efficient Ethernet. IEEE Commun. Mag. 48(11), 50–56 (2010)CrossRefGoogle Scholar
  17. 17.
    Nagle, J.: Congestion control in IP/TCP internetworks. SIGCOMM Comput. Commun. Rev. 14(4), 11–17 (1984)CrossRefGoogle Scholar
  18. 18.
    Chen, Q., Grosso, P., van der Veldt, K., de Laat, C., Hofman, R., Bal, H.E.: Profiling energy consumption of vms for green cloud computing. In: Proceedings of the International Conference on Cloud and Green Computing (CGC) (2011)Google Scholar
  19. 19.
    Zhu, H., van der Veldt, K., Grosso, P., Zhao, Z., Liao, X., de Laat, C.: Energy-aware semantic modeling for large scale infrastructures. In: Proceedings of the IEEE International Conference on Green Computing and Communications (GreenCom) Work In Progress Session, pp. 11–14 (2012)Google Scholar
  20. 20.
    Ghijsen, M., van der Ham, J., Grosso, P., de Laat, C.: Towards an Infrastructure Description Language for Modeling Computing Infrastructures. In: 10th IEEE International Symposium on Parallel and Distributed Processing with Applications (ISPA), pp. 207–214. Madrid (2012)Google Scholar
  21. 21.
    Prudhommeaux, E., Seaborne, A.: SPARQL query language for RDF. W3C Recomm. 4, 1–106 (2008)Google Scholar
  22. 22.
    Decker, S., Melnik, S., van Harmelen, F., Fensel, D., Klein, D., Broekstra, J.: The semantic Web: the roles of XML and RDF. IEEE Internet Comput. 15(3), 63–74 (2000)CrossRefGoogle Scholar
  23. 23.
    Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: a generic architecture for storing and querying RDF and RDF Schema. In: Horrocks, I., Hendler, J. (eds.) Proceedings of the first Int’l Semantic Web Conference (ISWC 2002). Lecture Notes in Computer Science, vol. 2342, pp. 54–68. Springer, Sardinia (2002)CrossRefGoogle Scholar
  24. 24.
    Dean, M., Schreiber, G.: OWL Web Ontology Language Reference. W3C Recommendation, W3C, New York (2004)Google Scholar
  25. 25.
    Reviriego, P., Christensen, K., Rabanillo, J., Maestro, J.A.: An initial evaluation of Energy Efficient Ethernet. IEEE Commun. Lett. 15(5), 578–580 (2011)CrossRefGoogle Scholar
  26. 26.
    Reviriego, P., Sivaraman, V., Zhao, Z., Maestro, J.A., Vishwanath, A., Sanchez-Macian, A., Russell, C.: An energy consumption model for Energy Efficient Ethernet switches. In: International Conference on High Performance Computing & Simulation (HPCS), pp. 98–104 (2012)Google Scholar
  27. 27.
    Mahadevan, P., Sharma, P., Banerjee, S.: A power benchmarking framework for network devices. In: Proceedings of the 8th International IFIP-TC 6 Networking Conference, pp. 795–808 (2009)Google Scholar
  28. 28.
    Wang, X., Yao, Y., Wang, X., Lu, K., Cao, Q.: CARPO: correlation-aware power optimization in data center networks. In: Proceedings IEEE INFOCOM, pp. 1125–1133 (2012)Google Scholar
  29. 29.
    Marsan, M.A., Anta, A.F., Mancuso, V., Rengarajan, B., Vasallo, P.R., Rizzo, G.: A simple analytical model for Energy Efficient Ethernet. IEEE Commun. Lett. 15(7), 773–775 (2011)CrossRefGoogle Scholar
  30. 30.
    Mancuso, V., Chatzipapas, A.: On IEEE 802.3az energy efficiency in Web Hosting Centers. IEEE Commun. Lett. 16(11), 1880–1883 (2012)CrossRefGoogle Scholar
  31. 31.
    Herreria-Alonso, S., Rodriguez-Perez, M., Fernandez-Veiga, M., Lopez-Garcia, C.: Optimal configuration of Energy-Efficient Ethernet. Comput. Netw. 56(10), 2456–2467 (2012)CrossRefGoogle Scholar
  32. 32.
    Herreria-Alonso, S., Rodriguez-Perez, M., Fernandez-Veiga, M., Lopez-Garcia, C.: A power saving model for burst transmission in Energy-Efficient Ethernet. IEEE Commun. Lett. 15(5), 584–586 (2011)CrossRefGoogle Scholar
  33. 33.
    Herreria-Alonso, S., Rodriguez-Perez, M., Fernandez-Veiga, M., Lopez-Garcia, C.: How efficient is Energy-Efficient Ethernet? In: The 3rd International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), pp. 1–7 (2011)Google Scholar
  34. 34.
    Maestro, J.A.: Optimize Energy Efficient Ethernet performance in bundled links. EDN network pp. 23–29 (2011)Google Scholar
  35. 35.
    Mostowfi, M., Christensen, K.: Saving energy in LAN switches: new methods of packet coalescing for Energy Efficient Ethernet. (2011). doi: 10.1109/IGCC.2011.6008547
  36. 36.
    de la Oliva, A., Hernandez, T.R., Guerri, J.C., Hernandez, J.A., Reviriego, P.: Performance analysis of energy efficient ethernet on video streaming servers. Comput. Netw. 57(3), 599–608 (2013)CrossRefGoogle Scholar
  37. 37.
    Reviriego, P., Maestro, J.A., Hernandez, J., Larrabeiti, D.: Study of the potential energy savings in Ethernet by combining Energy Efficient Ethernet and adaptive. Trans. Emerg. Telecommun. Technol. 23(3), 227–233 (2012)Google Scholar
  38. 38.
    Reviriego, P., Christensen, K., Maestro, J.A.: Using coordinated transmission with Energy Efficient Ethernet. In: Proceedings of the 10th International IFIP TC 6 Conference on Networking- Volume Part I, pp. 160–171 (2011)Google Scholar
  39. 39.
    Anastasi, G., Conti, M., Gregori, E., Passarella, A.: Saving energy in Wi-Fi hotspots through 802. 11 PSM : an analytical model. In: Proceedings of the Workshop on Linguistic Theory and Grammar Implementation, pp. 24–26 (2004)Google Scholar
  40. 40.
    Anastasi, G., Conti, M., Gregori, E., Passarella, A.: 802.11 power-saving mode for mobile computing in Wi-Fi hotspots: limitations, enhancements and open issues. Wirel. Netw. 14(6), 745–768 (2007)CrossRefGoogle Scholar
  41. 41.
    Tauber, M., Bhatti, S.N.: The effect of the 802.11 power save mechanism (PSM) on energy efficiency and performance during system activity. In: Proceedings of the IEEE International Conference on Green Computing and Communications (GreenCom) (2012)Google Scholar
  42. 42.
    Gunaratne, C., Christensen, K., Nordman, B.: Managing energy consumption costs in desktop PCs and LAN switches with proxying, split TCP connections, and scaling of link speed. Int. J. Netw. Manag. 15(5), 297–310 (2005)CrossRefGoogle Scholar
  43. 43.
    Mahadevan, P., Sharma, P., Banerjee, S., Ranganathan, P.: Energy aware network operations. In: IEEE INFOCOM Workshops, pp. 1–6 (2009)Google Scholar
  44. 44.
    Nedevschi, S., Popa, L., Iannaccone, G., Ratnasamy, S., Wetherall, D.: Reducing network energy consumption via sleeping and rate-adaptation. In: Proceedings of the 5th USENIX Symposium on Networked Systems Design and Implementation, pp. 323–336 (2008)Google Scholar
  45. 45.
    Abts, D., Marty, M.R., Wells, P.M., Klausler, P., Liu, H.: Energy proportional datacenter networks. In: Proceedings of the 37th annual international symposium on Computer architecture(ISCA), p. 338. New York, (2010)Google Scholar
  46. 46.
    Gunaratne, C., Christensen, K., Nordman, B., Suen, S.: Reducing the energy consumption of ethernet with adaptive link rate ( ALR ). IEEE Trans. Comput. 57(4), 448–461 (2008)CrossRefMathSciNetGoogle Scholar
  47. 47.
    Gunaratne, C., Christensen, K., Suen, S.W.: Ethernet adaptive link rate (ALR): analysis of a buffer threshold policy. In: IEEE Globecom 2006, pp. 1–6. Ieee (2006)Google Scholar
  48. 48.
    Goma, E., Canini, M., Toledo, A.L., Laoutaris, N., Kosti, D.: Insomnia in the access or How to curb access network related energy consumption. In: Proceedings of the ACM SIGCOMM Conference, pp. 338–349 (2011)Google Scholar
  49. 49.
    Chabarek, J., Sommers, J., Barford, P., Estan, C., Tsiang, D., Wright, S.: Power awareness in network design and routing. In: IEEE INFOCOM-The 27th Conference on Computer Communications, pp. 457–465 (2008)Google Scholar
  50. 50.
    Shirayanagi, H., Yamada, H., Kono, K.: Honeyguide: A VM migration-aware network topology for saving energy consumption in data center networks. In: 2012 IEEE Symposium on Computers and Communications (ISCC), pp. 460–467 (2012)Google Scholar
  51. 51.
    Heller, B., Mahadevan, P.: ElasticTree : saving energy in data center networks. In: The 7th USENIX Conference on Network Systems Design and Implementation(NSDI), pp. 2–17 (2010)Google Scholar
  52. 52.
    Singh, S., Candy, Y.: Putting the cart before the horse: merging traffic for energy conservation. IEEE Commun. Mag. 49(June), 78–82 (2011)CrossRefGoogle Scholar
  53. 53.
    Yiu, C., Singh, S.: Merging traffic to save energy in the enterprise. In: Proceedings of the 2nd International Conference on Energy-Efficient Computing and Networking (e-Energy), p. 97. New York, (2011) Google Scholar
  54. 54.
    Li, D., Guo, C., Wu, H., Tan, K., Zhang, Y., Lu, S., Wu, J.: Scalable and cost-effective interconnection of data-center servers using dual server ports. IEEE/ACM Trans. Netw. 19(1), 102–114 (2011)CrossRefGoogle Scholar
  55. 55.
    Shang, Y., Li, D., Xu, M.: A comparison study of energy proportionality of data center network architectures. In: 32nd International Conference on Distributed Computing Systems Workshops, pp. 1–7 (2012)Google Scholar
  56. 56.
    Oracle. Sun power calculators. (2012). Retrieved Aug 2012
  57. 57.
  58. 58.
    Czajkowski, K., Fitzgerald, S., Foster, I., Kesselman, C.: Grid information services for distributed resource sharing. In: Proceedings. 10th IEEE International Symposium on High Performance Distributed Computing, pp. 181–194 (2001)Google Scholar
  59. 59.
    Hanemann, A., Boote, J.W., Boyd, E., Dur, J., Kudarimoti, L., Lapacz, R., Swany, D.M., Trocha, S., Zurawski, J.: Perfsonar: a service oriented architecture for multi-domain network monitoring. In: In Proceedings of the Third International Conference on Service Oriented Computing (ICSOC 2005) (2005)Google Scholar
  60. 60.
    Zhao, Z., Grosso, P., van der Ham, J., Koning, R., de Laat, C.: An agent based network resource planner for workflow applications. Int. J. Multiagent Grid Syst. 7(6), 187–202 (2011)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Hao Zhu
    • 1
  • Karel van der Veldt
    • 1
  • Zhiming Zhao
    • 1
    Email author
  • Paola Grosso
    • 1
  • Dimitar Pavlov
    • 1
  • Joris Soeurt
    • 1
  • Xiangke Liao
    • 2
  • Cees de Laat
    • 1
  1. 1.University of AmsterdamAmsterdamNetherlands
  2. 2.National University of Defense TechnologyChangshaChina

Personalised recommendations