Advertisement

Cluster Computing

, Volume 17, Issue 2, pp 231–241 | Cite as

A general purpose parallel block structured open source incompressible flow solver

  • Mariana Mendina
  • Martin Draper
  • Ana Paula Kelm Soares
  • Gabriel Narancio
  • Gabriel UseraEmail author
Article

Abstract

A general purpose incompressible flow solver, called caffa3d.MBRi, is presented which features a block structured framework to accommodate both a flexible approach to geometry representation and a straightforward implementation of parallel capabilities through the MPI library. Representation of complex geometries can be handled semi automatically through a combination of body fitted blocks of grids and the immersed boundary condition strategy over both Cartesian and body fitted grid blocks. The parallelization strategy is based on the same block structured framework, by means of encapsulated MPI calls performing a set of conceptually defined high level communication tasks. A set of real world applications ranging from bioengineering to microclimate scenarios is presented to demonstrate the capabilities of the solver, which is open source and freely available through the web page.

Keywords

Finite Volume Immersed Boundary Blocks Structured MPI 

References

  1. 1.
    Ferziger, J., Peric, M.: Computational methods for fluid dynamics. Springer, Berlin (2002) CrossRefzbMATHGoogle Scholar
  2. 2.
    Igounet, P., Alfaro, P., Usera, G., Ezzatti, P.: Towards a finite volume model in a many-core platform. Int. J. High Perform. Syst. Archit. Google Scholar
  3. 3.
    Lange, C.F., Schäfer, M., Durst, F.: Local block refinement with a multigrid solver. Int. J. Numer. Methods Fluids 38, 21–41 (2002) CrossRefzbMATHGoogle Scholar
  4. 4.
    Lehnhauser, T., Schäfer, M.: Improved linear interpolation practice for finite-volume schemes on complex grids. Int. J. Numer. Methods Fluids 38, 625–645 (2002) CrossRefGoogle Scholar
  5. 5.
    Lehnhauser, T., Schäfer, M.: Efficient discretization of pressure-correction equations on non-orthogonal grids. Int. J. Numer. Methods Fluids 42, 211–231 (2003) CrossRefGoogle Scholar
  6. 6.
    Liao, C., Chang, Y., Lin, C., McDonough, J.M.: Simulating flows with moving rigid boundary using immersed-boundary method. Comput. Fluids 39, 152–167 (2010) CrossRefzbMATHGoogle Scholar
  7. 7.
    Lilek, Z., Muzaferija, S., Peric, M., Seidl, V.: An implicit finite-volume method using nonmatching blocks of structured grid. Numer. Heat Transf. Part B 32, 385–401 (1997) CrossRefGoogle Scholar
  8. 8.
    Mora Acosta, J.: Numerical algorithms for three dimensional computational fluid dynamic problems. Ph.D. Thesis, UPC (2001) Google Scholar
  9. 9.
    Peric, M.: Numerical methods for computing turbulent flows. Course notes (2001) Google Scholar
  10. 10.
    Rhie, C.M., Chow, W.L.: A numerical study of the turbulent flow past an isolated airfoil with trailing edge separation. AIAA J. 21, 1525–1532 (1983) CrossRefzbMATHGoogle Scholar
  11. 11.
    Silva Lopes, A., Palma, J.M.L.M., Castro, F.A.: Simulation of the Askervein flow. Part 2: Large-eddy simulations. Bound.-Layer Meteorol. 125, 85–108 (2007) CrossRefGoogle Scholar
  12. 12.
    Stewart, B.E., Leweke, T., Hourigan, K., Thompson, M.C.: Wake formation behind a rolling sphere. Phys. Fluids 20, 071704 (2008) CrossRefGoogle Scholar
  13. 13.
    Stewart, B.E., Thompson, M.C., Leweke, T., Hourigan, K.: Numerical and experimental studies of the rolling sphere wake. J. Fluid Mech. 643, 137–162 (2010) CrossRefzbMATHGoogle Scholar
  14. 14.
    Taylor, P., Teunissen, H.: Askervein ’82: report on the September/October 1982 experiment to study boundary layer flow over Askervein, South Uist. Technical Report MSRS-83-8, Meteorological Services Research Branch, Atmospheric Environment Service, Downsview, Ontario, Canada (1983), p. 172 Google Scholar
  15. 15.
    Taylor, P., Teunissen, H.: The Askervein Hill Project: report on the September/October 1983, main field experiment. Technical Report MSRS-84-6, Meteorological Services Research Branch, Atmospheric Environment Service, Downsview, Ontario, Canada (1985), p. 300 Google Scholar
  16. 16.
    Usera, G., Vernet, A., Ferré, J.A.: Use of time resolved PIV for validating LES/DNS of the turbulent flow within a PCB enclosure model. Flow Turbul. Combust. 77, 77–95 (2006) CrossRefzbMATHGoogle Scholar
  17. 17.
    Usera, G., Vernet, A., Ferré, J.A.: A parallel block-structured finite volume method for flows in complex geometry with sliding interfaces. Flow Turbul. Combust. 77, 471–495 (2008) CrossRefGoogle Scholar
  18. 18.
    Zaleski, S.: Science and fluid dynamics should have more open sources (2001). http://www.lmm.jussieu.fr/~zaleski/OpenCFD.html

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Mariana Mendina
    • 1
  • Martin Draper
    • 1
  • Ana Paula Kelm Soares
    • 2
  • Gabriel Narancio
    • 1
  • Gabriel Usera
    • 1
    Email author
  1. 1.IMFIAUdelarMontevideoUruguay
  2. 2.LEMMAUniversidade Federal do ParanáCuritibaBrasil

Personalised recommendations