Advertisement

Cluster Computing

, Volume 17, Issue 2, pp 487–502 | Cite as

Cloud-hosted databases: technologies, challenges and opportunities

  • Sherif SakrEmail author
Article

Abstract

One of the main advantages of the cloud computing paradigm is that it simplifies the time-consuming processes of hardware provisioning, hardware purchasing and software deployment. Currently, we are witnessing a proliferation in the number of cloud-hosted applications with a tremendous increase in the scale of the data generated as well as being consumed by such applications. Cloud-hosted database systems powering these applications form a critical component in the software stack of these applications. To better understand the challenges in developing effective cloud-hosted database systems, this article discusses the existing technologies for hosting the database tier of software applications in cloud environments, illustrates their strengths and weaknesses, and presents some opportunities for future work.

Keywords

Cloud Databases Consistency Transactions Replication 

References

  1. 1.
    Abadi, D.J.: Data management in the cloud: limitations and opportunities. IEEE Data Eng. Bull. 32(1) (2009). http://sites.computer.org/debull/A09mar/abadi.pdf
  2. 2.
    Agrawal, D., El Abbadi, A., Emekçi, F., Metwally, A.: Database management as a service: challenges and opportunities. In: ICDE (2009) Google Scholar
  3. 3.
    Armbrust, M., Curtis, K., Kraska, T., Fox, A., Franklin, M.J., Patterson, D.A.: PIQL: success-tolerant query processing in the cloud. Proc. VLDB Endow. 5(3), 181–192 (2011) Google Scholar
  4. 4.
    Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A., Lee, G., Patterson, D.A., Rabkin, A., Stoica, I., Zaharia, M.: Above the clouds: a Berkeley view of cloud computing. Technical Report UCB/EECS-2009-28, University of California, Berkeley (2009) Google Scholar
  5. 5.
    Baker, J., Bond, C., Corbett, J., Furman, J.J., Khorlin, A., Larson, J., Leon, J.-M., Li, Y., Lloyd, A., Yushprakh, V.: Megastore: providing scalable, highly available storage for interactive services. In: CIDR, pp. 223–234 (2011) Google Scholar
  6. 6.
    Barker, S.K., Chi, Y., Moon, H.J., Hacigümüs, H., Shenoy, P.J.: “Cut me some slack”: latency-aware live migration for databases. In: EDBT, pp. 432–443 (2012) CrossRefGoogle Scholar
  7. 7.
    Baset, S.A.: Cloud SLAs: present and future. Oper. Syst. Rev. 46(2), 57–66 (2012) CrossRefGoogle Scholar
  8. 8.
    Belaramani, N., Dahlin, M., Gao, L., Nayate, A., Venkataramani, A., Yalagandula, P., Zheng, J.: Practi replication. In: NSDI (2006) Google Scholar
  9. 9.
    Bermbach, D., Tai, S.: Eventual consistency: how soon is eventual? An evaluation of Amazon s3’s consistency behavior. In: Proceedings of the 6th Workshop on Middleware for Service Oriented Computing (2011) Google Scholar
  10. 10.
    Bernstein, P.A., Cseri, I., Dani, N., Ellis, N., Kalhan, A., Kakivaya, G., Lomet, D.B., Manne, R., Novik, L., Talius, T.: Adapting microsoft SQL server for cloud computing. In: ICDE, pp. 1255–1263 (2011) Google Scholar
  11. 11.
    Bodík, P., Fox, A., Franklin, M.J., Jordan, M.I., Patterson, D.A.: Characterizing, modeling, and generating workload spikes for stateful services. In: SoCC, pp. 241–252 (2010) Google Scholar
  12. 12.
    Brewer, E.A.: Towards robust distributed systems (abstract). In: PODC, p. 7 (2000) CrossRefGoogle Scholar
  13. 13.
    Bunch, C., Chohan, N., Krintz, C., Chohan, J., Kupferman, J., Lakhina, P., Li, Y., Nomura, Y.: An evaluation of distributed datastores using the AppScale cloud platform. In: IEEE CLOUD, pp. 305–312 (2010) Google Scholar
  14. 14.
    Cattell, R.: Scalable SQL and NoSQL data stores. SIGMOD Rec. (2010). doi: 10.1145/1376616.1376691 Google Scholar
  15. 15.
    Cecchet, E., Candea, G., Ailamaki, A.: Middleware-based database replication: the gaps between theory and practice. In: SIGMOD Conference, pp. 739–752 (2008) Google Scholar
  16. 16.
    Cecchet, E., Singh, R., Sharma, U., Shenoy, P.J.: Dolly: virtualization-driven database provisioning for the cloud. In: VEE (2011) Google Scholar
  17. 17.
    Chandra, T.D., Griesemer, R., Redstone, J.: Paxos made live: an engineering perspective. In: PODC, pp. 398–407 (2007) Google Scholar
  18. 18.
    Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: a distributed storage system for structured data. ACM Trans. Comput. Syst. (2008). doi: 10.1145/1365815.1365816 Google Scholar
  19. 19.
    Chi, Y., Moon, H.J., Hacigümüs, H.: ICBS: incremental costbased scheduling under piecewise linear SLAs. Proc. VLDB Endow. 4(9), 563–574 (2011) Google Scholar
  20. 20.
    Cipar, J., Ganger, G.R., Keeton, K., Morrey, C.B., Soules, C.A.N., Veitch, A.C.: LazyBase: trading freshness for performance in a scalable database. In: EuroSys, pp. 169–182 (2012) CrossRefGoogle Scholar
  21. 21.
    Cooper, B.F., Baldeschwieler, E., Fonseca, R., Kistler, J.J., Narayan, P.P.S., Neerdaels, C., Negrin, T., Ramakrishnan, R., Silberstein, A., Srivastava, U., Stata, R.: Building a cloud for Yahoo! IEEE Data Eng. Bull. 32(1) (2009). http://sites.computer.org/debull/A09mar/cooper1.pdf
  22. 22.
    Cooper, B.F., Ramakrishnan, R., Srivastava, U., Silberstein, A., Bohannon, P., Jacobsen, H.-A., Puz, N., Weaver, D., Yerneni, R.: PNUTS: Yahoo!’s hosted data serving platform. Proc. VLDB Endow. 1(2), 1277–1288 (2008) Google Scholar
  23. 23.
    Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking cloud serving systems with YCSB. In: SoCC (2010) Google Scholar
  24. 24.
    Curino, C., Jones, E.P.C., Popa, R.A., Malviya, N., Wu, E., Madden, S., Balakrishnan, H., Zeldovich, N.: Relational cloud: a database service for the cloud. In: CIDR, pp. 235–240 (2011) Google Scholar
  25. 25.
    Das, S., Agrawal, D., El Abbadi, A.: G-Store: a scalable data store for transactional multi key access in the cloud. In: SoCC, pp. 163–174 (2010) Google Scholar
  26. 26.
    Das, S., Nishimura, S., Agrawal, D., El Abbadi, A.: Albatross: lightweight elasticity in shared storage databases for the cloud using live data migration. Proc. VLDB Endow. 4(8), 494–505 (2011) Google Scholar
  27. 27.
    DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: Amazon’s highly available key-value store. In: SOSP, pp. 205–220 (2007) CrossRefGoogle Scholar
  28. 28.
    Durkee, D.: Why cloud computing will never be free. Commun. ACM (2010). doi: 10.1145/1735223.1735242 zbMATHGoogle Scholar
  29. 29.
    Elmore, A.J., Das, S., Agrawal, D., El Abbadi, A.: Zephyr: live migration in shared nothing databases for elastic cloud platforms. In: SIGMOD Conference, pp. 301–312 (2011) Google Scholar
  30. 30.
    Gray, J. (ed.): The Benchmark Handbook for Database and Transaction Systems, 1st edn. Morgan Kaufmann, San Mateo (1991) Google Scholar
  31. 31.
    Gray, J., Reuter, A.: Transaction Processing: Concepts and Techniques. The Morgan Kaufmann Series in Data Management Systems. Morgan Kaufmann, San Mateo (1992) Google Scholar
  32. 32.
    Jacobs, D., Aulbach, S.: Ruminations on multi-tenant databases. In: BTW, pp. 514–521 (2007) Google Scholar
  33. 33.
    Kossmann, D., Kraska, T., Loesing, S.: An evaluation of alternative architectures for transaction processing in the cloud. In: SIGMOD Conference, pp. 579–590 (2010) Google Scholar
  34. 34.
    Kraska, T., Hentschel, M., Alonso, G., Kossmann, D.: Consistency Rationing in the Cloud: Pay only when it matters. Proc. VLDB Endow. 2(1) (2009). http://www.vldb.org/pvldb/2/vldb09-759.pdf
  35. 35.
    Kraska, T., Pang, G., Franklin, M.J., Madden, S.: MDCC: multi-data center consistency. In: CoRR, arXiv:1203.6049 abs (2012) Google Scholar
  36. 36.
    Lang, W., Shankar, S., Patel, J.M., Kalhan, A.: Towards multi-tenant performance SLOs. In: ICDE, pp. 702–713 (2012) Google Scholar
  37. 37.
    Levandoski, J.J., Lomet, D.B., Mokbel, M.F., Zhao, K.: Deuteronomy: transaction support for cloud data. In: CIDR, pp. 123–133 (2011) Google Scholar
  38. 38.
    Lloyd, W., Freedman, M.J., Kaminsky, M., Andersen, D.G.: Don’t settle for eventual: scalable causal consistency for wide-area storage with COPS. In: SOSP, pp. 401–416 (2011) Google Scholar
  39. 39.
    Minhas, U.F., Yadav, J., Aboulnaga, A., Salem, K.: Database systems on virtual machines: how much do you lose? In: ICDE Workshops, pp. 35–41 (2008) Google Scholar
  40. 40.
    Patil, S., Polte, M., Ren, K., Tantisiriroj, W., Xiao, L., López, J., Gibson, G., Fuchs, A., Rinaldi, B.: YCSB++: benchmarking and performance debugging advanced features in scalable table stores. In: SoCC (2011) Google Scholar
  41. 41.
    Pritchett, D.: BASE: an acid alternative. ACM Queue 6(3), 48–55 (2008) CrossRefGoogle Scholar
  42. 42.
    Sakr, S., Liu, A.: SLA-based and consumer-centric dynamic provisioning for cloud databases. In: IEEE CLOUD, pp. 360–367 (2012) Google Scholar
  43. 43.
    Sakr, S., Liu, A.: Is your cloud-hosted database truly elastic? In: IEEE 9th World Congress on Services (2013) Google Scholar
  44. 44.
    Sakr, S., Liu, A., Batista, D.M., Alomari, M.: A survey of large scale data management approaches in cloud environments. IEEE Commun. Surv. Tutor. 13(3), 311–336 (2011) CrossRefGoogle Scholar
  45. 45.
    Schad, J., Dittrich, J., Quiané-Ruiz, J.-A.: Runtime Measurements in the Cloud: Observing, Analyzing, and Reducing Variance. Proc. VLDB Endow. 3(1) (2010) Google Scholar
  46. 46.
    Soror, A.A., Minhas, U.F., Aboulnaga, A., Salem, K., Kokosielis, P., Kamath, S.: Automatic virtual machine configuration for database workloads. In: SIGMOD Conference (2008) Google Scholar
  47. 47.
    Sovran, Y., Power, R., Aguilera, M.K., Li, J.: Transactional storage for geo-replicated systems. In: SOSP, pp. 385–400 (2011) Google Scholar
  48. 48.
    Stonebraker, M.: One size fits all: an idea whose time has come and gone. Commun. ACM 51(12), 76 (2008) CrossRefGoogle Scholar
  49. 49.
    Suleiman, B., Sakr, S., Jeffrey, R., Liu, A.: On understanding the economics and elasticity challenges of deploying business applications on public cloud infrastructure. J. Internet Serv. Appl. 3(2), 173–193 (2012) CrossRefGoogle Scholar
  50. 50.
    Tamer Ozsu, M., Valduriez, P.: Principles of Distributed Database Systems, 3rd edn. Springer, Berlin (2011) Google Scholar
  51. 51.
    Tatemura, J., Po, O., Hacigümüs, H.: Microsharding: a declarative approach to support elastic OLTP workloads. Oper. Syst. Rev. 46(1), 4–11 (2012) CrossRefGoogle Scholar
  52. 52.
    Vogels, W.: Eventually consistent. ACM Queue 6, 14–19 (2008) CrossRefGoogle Scholar
  53. 53.
    Wada, H., Fekete, A., Zhao, L., Lee, K., Liu, A.: Data consistency properties and the trade-offs in commercial cloud storage: the consumers’ perspective. In: CIDR (2011) Google Scholar
  54. 54.
    Xiong, P., Chi, Y., Zhu, S., Moon, H.J., Pu, C., Hacigümüs, H.: Intelligent management of virtualized resources for database systems in cloud environment. In: ICDE, pp. 87–98 (2011) Google Scholar
  55. 55.
    Zhao, L., Sakr, S., Fekete, A., Wada, H., Liu, A.: Application-managed database replication on virtualized cloud environments. In: Data Management in the Cloud (DMC), ICDE Workshops (2012) Google Scholar
  56. 56.
    Zhao, L., Sakr, S., Liu, A.: Application-managed replication controller for cloud-hosted databases. In: IEEE CLOUD, pp. 922–929 (2012) Google Scholar
  57. 57.
    Zhao, L., Sakr, S., Liu, A.: A framework for consumer-centric SLA management of cloud-hosted databases. IEEE Trans. Serv. Comput. (2013) Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.National ICT Australia (NICTA) and School of Computer Science and EngineeringUniversity of New South WalesSydneyAustralia

Personalised recommendations