Cluster Computing

, Volume 16, Issue 3, pp 527–544 | Cite as

Finding scalable configurations for AEDB broadcasting protocol using multi-objective evolutionary algorithms

  • Patricia RuizEmail author
  • Bernabe Dorronsoro
  • Pascal Bouvry


Energy consumption is one of the main concerns in mobile ad hoc networks (or MANETs). The lifetime of its devices highly depends on the energy consumption as they rely on batteries. The adaptive enhanced distance based broadcasting algorithm, AEDB, is a message dissemination protocol for MANETs that uses cross-layer technology to highly reduce the energy consumption of devices in the process, while still providing competitive performance in terms of coverage and time. We use two different multi-objective evolutionary algorithms to optimize the protocol on three network densities, and we evaluate the scalability of the best found AEDB configurations on larger networks and different densities.


Broadcasting protocols Optimization algorithms Ad hoc networks Energy efficiency 



This work was completed with the support of Luxembourg FNR GreenIT project (C09/IS/05).


  1. 1.
    Abdullah, J., Parish, D.J.: Node connectivity index as mobility metric for GA based QoS routing in MANET. In: Mobility 2007: Proceedings of the 4th International Conference on Mobile Technology, Applications and Systems and the 1st International Symposium on Computer Human Interaction in Mobile Technology, pp. 104–111. ACM, New York (2007) CrossRefGoogle Scholar
  2. 2.
    Alba, E., Bouvry, P., Dorronsoro, B., Luna, F., Nebro, A.: A cellular multi-objective genetic algorithm for optimal broadcasting strategy in metropolitan MANETs. In: Nature Inspired Distributed Computing (NIDISC) Sessions of the (IPDPS) Workshop, p. 192b (2005) Google Scholar
  3. 3.
    Alba, E., Dorronsoro, B.: Cellular Genetic Algorithms: Operations Research. Compuer Science Interfaces. Springer, Heidelberg (2008) Google Scholar
  4. 4.
    Alba, E., Dorronsoro, B., Luna, F., Nebro, A., Bouvry, P., Hogie, L.: A cellular multi-objective genetic algorithm for optimal broadcasting strategy in metropolitan MANETs. Comput. Commun. 30(4), 685–697 (2007) CrossRefGoogle Scholar
  5. 5.
    Bäck, T., Fogel, D., Michalewicz, Z. (eds.): Handbook of Evolutionary Computation. Oxford University Press, London (1997) zbMATHGoogle Scholar
  6. 6.
    Cagalj, M., Hubaux, J.P., Enz, C.: Minimum-energy broadcast in all-wireless networks: Np-completeness and distribution issues. In: Proceedings of the 8th Annual International Conference on Mobile Computing and Networking (MobiCom’02), pp. 172–182. ACM, New York (2002) Google Scholar
  7. 7.
    Cagalj, M., Hubaux, J.P., Enz, C.C.: Energy-efficient broadcasting in all-wireless networks. Wirel. Netw. 11(1–2), 177–188 (2005) CrossRefGoogle Scholar
  8. 8.
    Chen, X., Faloutsos, M., Krishnamurthy, S.V.: Power adaptive broadcasting with local information in ad hoc networks. In: Conference on Network Protocols, p. 168. Los Alamitos, IEEE Computer Society (2003) Google Scholar
  9. 9.
    Chiang, T., Liu, C., Huang, Y.: A near-optimal multicast scheme for mobile ad hoc networks using a hybrid genetic algorithm. Expert Syst. Appl. 33(3), 734–742 (2007) CrossRefGoogle Scholar
  10. 10.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002) CrossRefGoogle Scholar
  11. 11.
    Di Caro, G.A., Ducatelle, F., Gambardella, L.M.: AntHocNet: an adaptive nature-inspired algorithm for routing in mobile ad hoc networks. Eur. Trans. Telecommun. 16(5), 443–455 (2005) CrossRefGoogle Scholar
  12. 12.
    Durillo, J., Nebro, A., Luna, F., Alba, E.: Solving three-objective optimization problems using a new hybrid cellular genetic algorithm. In: Parallel Problem Solving from Nature (PPSN X). Lecture Notes in Computer Science, vol. 5199, pp. 661–670. Springer, Berlin (2008) CrossRefGoogle Scholar
  13. 13.
    Durillo, J.J., Nebro, A.J.: jMetal: A java framework for multi-objective optimization. Adv. Eng. Softw. 42, 760–771 (2011) CrossRefGoogle Scholar
  14. 14.
    Durillo, J.J., Nebro, A.J., Luna, F., Alba, E.: A study of master-slave approaches to parallelize NSGA-II. In: Nature Inspired Distributed Computing (NIDISC) Workshop of the (IPDPS), p. 11 (2008) Google Scholar
  15. 15.
    García, S., Luque, C., Cervantes, A., Galván, I.: Multiobjective algorithms hybridization to optimize broadcasting parameters in mobile ad-hoc networks. In: Proceedings of the 10th International Work-Conference on Artificial Neural Networks. Part I. Bio-inspired Systems: Computational and Ambient Intelligence. Lecture Notes in Computer Science, vol. 5517, pp. 728–735. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  16. 16.
    García-Nieto, J., Alba, E.: Automatic parameter tuning with metaheuristics of the AODV routing protocol for vehicular ad-hoc networks. In: Applications of Evolutionary Computation (EvoApplications 2010). Lecture Notes in Computer Science, vol. 6025, pp. 21–30. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  17. 17.
    García-Nieto, J., Toutouh, J., Alba, E.: Automatic tuning of communication protocols for vehicular ad hoc networks using metaheuristics. Eng. Appl. Artif. Intell. 32(5), 795–805 (2010) CrossRefGoogle Scholar
  18. 18.
    Gendreau, M., Potvin, J.Y. (eds.): Handbook of Metaheuristics. International Series in Operations Research & Management Science, vol. 146. Springer, Berlin (2010) zbMATHGoogle Scholar
  19. 19.
    Gomez, J., Campbell, A.T.: Variable-range transmission power control in wireless ad hoc networks. IEEE Trans. Mob. Comput. 6(1), 87–99 (2007) CrossRefGoogle Scholar
  20. 20.
    Groenevelt, R.B., Altman, E., Nain, P.: Relaying in mobile ad hoc networks: the Brownian motion mobility model. Wirel. Netw. 12, 561–571 (2006) CrossRefGoogle Scholar
  21. 21.
    Hogie, L., Guinand, F., Bouvry, P.: A heuristic for efficient broadcasting in the metropolitan ad hoc network. In: 8th Int. Conf. on Knowledge-Based Intelligent Information and Engineering Systems, pp. 727–733 (2004) CrossRefGoogle Scholar
  22. 22.
    Huang, C., Chuang, Y., Hu, K.: Using particle swarm optimization for QoS in ad-hoc multicast. Eng. Appl. Artif. Intell. 22(8), 1188–1193 (2009) CrossRefGoogle Scholar
  23. 23.
    Khan, I., Javaid, A., Qian, H.L.: Distance-based dynamically adjusted probabilistic forwarding for wireless mobile ad hoc networks. In: 5th IFIP International Conference on Wireless and Optical Communications Networks (WOCN’08), pp. 1–6 (2008) Google Scholar
  24. 24.
    Lacage, M., Henderson, T.R.: Yet another network simulator. In: Proceeding from the 2006 Workshop on ns-2: The IP Network Simulator (WNS2’06), p. 12 (2006) CrossRefGoogle Scholar
  25. 25.
    León, C., Miranda, G., Segura, C.: Optimizing the configuration of a broadcast protocol through parallel cooperation of multi-objective evolutionary algorithms. In: Proc. of the 2nd Int. Conf. on Advanced Engineering Computing and Applications in Sciences, pp. 135–140 (2008) Google Scholar
  26. 26.
    León, C., Miranda, G., Segura, C.: Optimizing the broadcast in MANETs using a team of evolutionary algorithms. In: 6th International Conference on Large-Scale Scientific Computing (LSSC07). Lecture Notes in Computer Science, vol. 4818, pp. 569–576. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  27. 27.
    Li, X., Nguyen, T.D., Martin, R.P.: Using adaptive range control to optimize 1-hop broadcast coverage in dense wireless networks. In: SenSys, pp. 314–315 (2003) Google Scholar
  28. 28.
    Liang, W., Brent, R., Xu, Y., Wang, Q.: Minimum-energy all-to-all multicasting in wireless ad hoc networks. IEEE Trans. Wirel. Commun. 8(11), 5490–5499 (2009) CrossRefGoogle Scholar
  29. 29.
    Ni, S.Y., Tseng, Y.C., Chen, Y.S., Sheu, J.P.: The broadcast storm problem in a mobile ad hoc network. In: 5th Annual ACM/IEEE International Conference on Mobile Computing and Networking, pp. 151–162 (1999) CrossRefGoogle Scholar
  30. 30.
    Reumerman, H., Runi, M.: Distributed power control for reliable broadcast in inter-vehicle communication systems. In: 2nd International Workshop on Intelligent Transportation (2005) Google Scholar
  31. 31.
    Ruiz, P., Bouvry, P.: Distributed energy self-adaptation in ad hoc networks. In: Proc. of IEEE Int. Workshop on Management of Emerging Networks and Services (MENS), in Conjunction with IEEE Globecom, Miami, USA, pp. 539–543 (2010) Google Scholar
  32. 32.
    Ruiz, P., Bouvry, P.: Enhanced distance based broadcasting protocol with reduced energy consumption. In: Workshop on Optimization Issues in Energy Efficient Distributed Systems (OPTIM), Part of the 2010 International Conference on High Performance Computing and Simulation (HPCS), pp. 249–258 (2010) CrossRefGoogle Scholar
  33. 33.
    Ruiz, P., Dorronsoro, B., Bouvry, P.: Optimization and performance analysis of the AEDB broadcasting algorithm. In: International Workshop on Wireless Mesh and Ad Hoc Networks, in Conjunction with International Conference on Computer Communication Networks (ICCN), Maui, Hawaii, pp. 1–6 (2011) Google Scholar
  34. 34.
    Ruiz, P., Dorronsoro, B., Valentini, G., Pinel, F., Bouvry, P.: Optimisation of the enhanced distance based broadcasting protocol for manets. J. Supercomput. (Special Issue on Green Networks) (2012, to appear). doi: 10.1007/s11227-011-0564-x
  35. 35.
    Sapienza, T.J.: Optimizing quality of service of wireless mobile ad-hoc networks using evolutionary computation. In: Proceedings of the 4th Annual Workshop on Cyber Security and Information Intelligence Research (CSIIRW), pp. 1–5. ACM, New York (2008) Google Scholar
  36. 36.
    Toutouh, J., Nesmachnow, S., Alba, E.: Fast energy-aware OLSR routing in VANETs by means of a parallel evolutionary algorithm. Clust. Comput. (2012, to appear) Google Scholar
  37. 37.
    Wu, S.L., Tseng, Y.C., Lin, C.Y., Sheu, J.P.: A multi-channel mac protocol with power control for multi-hop mobile ad hoc networks. Comput. J. 45(1), 101–110 (2002) zbMATHCrossRefGoogle Scholar
  38. 38.
    Yen, Y.S., Chan, Y.K., Chao, H.C., Park, J.H.: A genetic algorithm for energy-efficient based multicast routing on MANETs. Comput. Commun. 31, 2632–2641 (2008) CrossRefGoogle Scholar
  39. 39.
    Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Patricia Ruiz
    • 1
    Email author
  • Bernabe Dorronsoro
    • 2
  • Pascal Bouvry
    • 1
  1. 1.University of LuxembourgLuxembourgLuxembourg
  2. 2.Interdisciplinary Center of Security, Reliability, and TrustLuxembourgLuxembourg

Personalised recommendations