Cluster Computing

, Volume 14, Issue 4, pp 471–481 | Cite as

Power management by load forecasting in web server clusters

  • Carlos Santana
  • Julius C. B. Leite
  • Daniel Mossé


The complexity and requirements of web applications are increasing in order to meet more sophisticated business models (web services and cloud computing, for instance). For this reason, characteristics such as performance, scalability and security are addressed in web server cluster design. Due to the rising energy costs and also to environmental concerns, energy consumption in this type of system has become a main issue. This paper shows energy consumption reduction techniques that use a load forecasting method, combined with DVFS (Dynamic Voltage and Frequency Scaling) and dynamic configuration techniques (turning servers on and off), in a soft real-time web server clustered environment. Our system promotes energy consumption reduction while maintaining user’s satisfaction with respect to request deadlines being met. The results obtained show that prediction capabilities increase the QoS (Quality of Service) of the system, while maintaining or improving the energy savings over state-of-the-art power management mechanisms. To validate this predictive policy, a web application running a real workload profile was deployed in an Apache server cluster testbed running Linux.


Web server clusters Power management Load forecasting Quality of service 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    ACPI: Advanced configuration and power interface specification, rev. 4.0 (2009).
  2. 2.
    Apache: The apache HTTP server project (2009).
  3. 3.
    Bertini, L., Leite, J.C.B., Mossé, D.: Statistical QoS guarantee and energy-efficiency in web server clusters. In: 19th Euromicro Conference on Real-Time Systems, Pisa, Italy, July 2007, pp. 83–92 (2007) CrossRefGoogle Scholar
  4. 4.
    Bertini, L., Leite, J.C.B., Mossé, D.: Generalized tardiness quantile metric: Distributed DVS for soft real-time web clusters. In: 21st Euromicro Conference on Real-Time Systems, Dublin, Ireland, July 2009, pp. 227–236 (2009) CrossRefGoogle Scholar
  5. 5.
    Bertini, L., Leite, J.C.B., Mossé, D.: Optimal dynamic configuration in web server clusters. J. Syst. Softw. 83(4), 585–598 (2010) CrossRefGoogle Scholar
  6. 6.
    Bianchini, R., Rajamony, R.: Power and energy management for server systems. Computer 37(11), 68–74 (2004) CrossRefGoogle Scholar
  7. 7.
    Cardellini, V., Casalicchio, E., Colajanni, M., Yu, P.S.: The state of the art in locally distributed web-server systems. ACM Comput. Surv. 34(2), 263–311 (2002) CrossRefGoogle Scholar
  8. 8.
    Chen, G., He, W., Liu, J., Nath, S., Rigas, L., Xiao, L., Zhao, F.: Energy-aware server provisioning and load dispatching for connection-intensive internet services. In: 5th USENIX Symposium on Networked Systems Design and Implementation, San Francisco, CA, USA, April 2008, pp. 337–350 (2008) Google Scholar
  9. 9.
    Coin-OR: Computational infrastructure for operations research (2009).
  10. 10.
    EIA: International energy outlook. Energy Information Administration, USA (2009).
  11. 11.
    Elnozahy, M., Kistler, M., Rajamony, R.: Energy-efficient server clusters. In: 2nd International Workshop on Power Aware Computer Systems, Cambridge, MA, USA, February 2002, pp. 179–196 (2002) Google Scholar
  12. 12.
    EPA: Report on server and data center energy efficiency. Environmental Protection Agency, USA (2007).
  13. 13.
    GNU: GNU linear programming kit. GNU Software Foundation (2009).
  14. 14.
    Guerra, R.P.O., Leite, J.C.B., Fohler, G.: Attaining soft real-time constraint and energy-efficiency in web servers. In: 23rd ACM Symposium on Applied Computing, Fortaleza, CE, Brazil, March 2008, pp. 2085–2089 (2008) Google Scholar
  15. 15.
    Hanke, J.E., Reitsch, A.G.: Business Forecasting. Prentice Hall, New York (1995) Google Scholar
  16. 16.
    Horvath, T., Abdelzaher, T.F., Skadron, K., Liu, X.: Dynamic voltage scaling in multitier web servers with end-to-end delay control. IEEE Trans. Comput. 56(4), 444–458 (2007) MathSciNetCrossRefGoogle Scholar
  17. 17.
    Ishihara, T., Yasuura, H.: Voltage scheduling problem for dynamically variable voltage processors. In: International Symposium on Low Power Electronics and Design, Monterey, CA, USA, August 1998, pp. 197–202 (1998) Google Scholar
  18. 18.
    Kalyvianaki, E., Charalambous, T., Hand, S.: Self-adaptive and self-configured CPU resource provisioning for virtualized servers using Kalman filters. In: 6th IEEE International Conference on Autonomic Computing, Barcelona, Spain, June 2009, pp. 117–126 (2009) Google Scholar
  19. 19.
    Kaplan, J.M., Forrest, W., Kindler, N.: Revolutionizing data center energy efficiency (2008).
  20. 20.
    Kusic, D., Kephart, J.O., Hanson, J.E., Kandasamy, N., Jiang, G.: Power and performance management of virtualized computing environments via lookahead control. Clust. Comput. 12(1), 1–15 (2009) CrossRefGoogle Scholar
  21. 21.
    LBNL: The Internet Traffic Archive. Lawrence Berkeley National Laboratory, Berkeley (2009) Google Scholar
  22. 22.
    Makridakis, S.G., Wheelwright, S.C., Hyndman, R.J.: Forecasting: Methods and Applications. Wiley, New York (1997) Google Scholar
  23. 23.
    Mosberger, D., Jin, T.: httperf: A tool for measuring web server performance. In: Internet Server Performance Workshop, Madison, WI, USA, June 1998, pp. 59–67 (1998) Google Scholar
  24. 24.
    Pallipadi, V., Starikovskiy, A.: The ondemand governor: past, present and future. In: Linux Symposium, Ottawa, Canadá, July 2006, pp. 223–238 (2006) Google Scholar
  25. 25.
    Pinheiro, E., Bianchini, R., Carrera, E.V., Heath, T.: Dynamic cluster reconfiguration for power and performance. In: Compilers and Operating Systems for Low Power, Kluwer Academic, Dordrecht (2003) Google Scholar
  26. 26.
    Poladian, V., Garlan, D., Shaw, M., Schmerl, B., Sousa, J.P., Satyanarayanan, M.: Leveraging resource prediction for anticipatory dynamic configuration. In: 1st IEEE International Conference on Self-Adaptive and Self-Organizing Systems, Boston, MA, USA, July 2007, pp. 214–223 (2007) Google Scholar
  27. 27.
    Rusu, C., Ferreira, A., Scordino, C., Watson, A., Melhem, R., Mossé, D.: Energy-efficient real-time heterogeneous server clusters. In: 12th IEEE Real-Time and Embedded Technology and Applications Symposium San Jose, CA, USA, April 2006, pp. 418–428 (2006) Google Scholar
  28. 28.
    Santana, C., Leite, J.C.B., Mossé, D.: Load forecasting applied to soft real-time web clusters. In: 25th ACM Symposium on Applied Computing, Sierre, Switzerland, March 2010, pp. 346–350 (2010) Google Scholar
  29. 29.
    SCIP: Solving constraint integer programs. Konrad-Zuse-Zentrum für Informationstechnik, Germany (2009).
  30. 30.
    TPPC: Transaction Processing Performance Council (2009).
  31. 31.
    Wang, Y., Wang, X., Chen, M., Zhu, X.: Power-efficient response time guarantees for virtualized enterprise servers. In: 28th IEEE Real-Time Systems Symposium, Barcelona, Spain, December 2008, pp. 303–312 (2008) Google Scholar
  32. 32.
    Weiser, M., Welch, B., Demers, A., Shenker, S.: Scheduling for reduced CPU energy. In: 1st Symposium on Operating System Design and Implementation, Monterey, CA, USA, November 1994 (1994) Google Scholar
  33. 33.
    Wuttke, J.: lmfit—A C/C++ routine for Levenberg-Marquardt minimization with wrapper for least-squares curve fitting (2009).

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Carlos Santana
    • 1
  • Julius C. B. Leite
    • 1
  • Daniel Mossé
    • 2
  1. 1.Instituto de ComputaçãoUniversidade Federal FluminenseNiteróiBrazil
  2. 2.Department of Computer ScienceUniversity of PittsburghPittsburghUSA

Personalised recommendations