Cluster Computing

, Volume 16, Issue 1, pp 65–75 | Cite as

DENS: data center energy-efficient network-aware scheduling

  • Dzmitry KliazovichEmail author
  • Pascal Bouvry
  • Samee Ullah Khan


In modern data centers, energy consumption accounts for a considerably large slice of operational expenses. The existing work in data center energy optimization is focusing only on job distribution between computing servers based on workload or thermal profiles. This paper underlines the role of communication fabric in data center energy consumption and presents a scheduling approach that combines energy efficiency and network awareness, named DENS. The DENS methodology balances the energy consumption of a data center, individual job performance, and traffic demands. The proposed approach optimizes the tradeoff between job consolidation (to minimize the amount of computing servers) and distribution of traffic patterns (to avoid hotspots in the data center network).


Network-aware scheduling Energy-efficient Data center Cloud computing Congestion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Al-Fares, M., Radhakrishnan, S., Raghavan, B., Huang, N., Vahdat, A.: Hedera: dynamic flow scheduling for data center networks. In: Proceedings of the 7th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’10), San Jose, CA, April 2010 Google Scholar
  2. 2.
    Alizadeh, M., Atikoglu, B., Kabbani, A., Lakshmikantha, A., Pan, R., Prabhakar, B., Seaman, M.: Data center transport mechanisms: congestion control theory and IEEE standardization. In: Annual Allerton Conference on Communication, Control, and Computing, September 2008 Google Scholar
  3. 3.
    Beloglazov, A., Buyya, R.: Energy efficient resource management in virtualized cloud data centers. In: IEEE/ACM International Conference on Cluster, Cloud and Grid Computing (CCGrid), pp. 826–831, May 2010 CrossRefGoogle Scholar
  4. 4.
    Benini, L., Bogliolo, A., De Micheli, G.: A survey of design techniques for system-level dynamic power management. IEEE Trans. Very Large Scale Integr. 8(3), 299–316 (2000) CrossRefGoogle Scholar
  5. 5.
    Bergamasco, D., Baldini, A., Alaria, V., Bonomi, F., Pan, R.: Methods and devices for backward congestion notification. US Patent 2007/0081454 Google Scholar
  6. 6.
    Berl, A., Gelenbe, E., Di Girolamo, M., Giuliani, G., De Meer, H., Dang, M.Q., Pentikousis, K.: Energy-efficient cloud computing. The Computer Journal 53(7), 1045–1051 (2009) CrossRefGoogle Scholar
  7. 7.
    Brown, R., et al.: Report to congress on server and data center energy efficiency: public law 109-431. Lawrence Berkeley National Laboratory, Berkeley, 2008 Google Scholar
  8. 8.
    Chen, G., He, W., Liu, J., Nath, S., Rigas, L., Xiao, L., Zhao, F.: Energy-aware server provisioning and load dispatching for connection-intensive internet services. In: the 5th USENIX Symposium on Networked Systems Design and Implementation, Berkeley, CA, USA, 2008 Google Scholar
  9. 9.
    Chen, M., Zhang, H., Su, Y., Wang, X., Jiang, G., Yoshihira, K.: EffectiveVM sizing in Virtualized Data Centers. In: 12th IFIP/IEEE International Symposium on Integrated Network Management (IM), Dublin, Ireland, May 2011 Google Scholar
  10. 10.
    Cisco Data Center Infrastructure 2.5 Design Guide. Cisco Press, March 2010 Google Scholar
  11. 11.
    Fan, X., Weber, W.-D., Barroso, L.A.: Power provisioning for a warehouse-sized computer. In: Proceedings of the ACM International Symposium on Computer Architecture, San Diego, CA, June 2007 Google Scholar
  12. 12.
    Floyd, S., Jacobson, V.: Random early detection gateways for congestion avoidance. IEEE/ACM Trans. Netw. 1(4), 397–413 (1993) CrossRefGoogle Scholar
  13. 13.
    Garrison, S., Oliva, V., Lee, G., Hays, R.: Ethernet alliance: data center bridging, November 2008 Google Scholar
  14. 14.
    Gartner Group: available at: (2011)
  15. 15.
    Guo, C., Wu, H., Tan, K., Shiy, L., Zhang, Y., Luz, S.: DCell: a scalable and fault-tolerant network structure for data centers. In: ACM SIGCOMM, Seattle, Washington, USA 2008 Google Scholar
  16. 16.
    Guo, C., Lu, G., Li, D., Wu, H., Zhang, X., Shi, Y., Tian, C., Zhang, Y., Lu, S.: BCube: A high performance, server-centric network architecture for modular data centers. In: ACM SIGCOMM, Barcelona, Spain 2009 Google Scholar
  17. 17.
    IEEE 802.1 Data Center Bridging Task Group, available at: (2011)
  18. 18.
    IEEE std 802.3ba-2010, Media access control parameters, physical layers and management parameters for 40 Gb/s and 100 Gb/s Operation, June 2010 Google Scholar
  19. 19.
    Kliazovich, D., Bouvry, P., Audzevich, Y., Khan, S.U.: GreenCloud: a packet-level simulator of energy-aware cloud computing data centers. In: IEEE Global Communications Conference (GLOBECOM), Miami, FL, USA, December 2010 Google Scholar
  20. 20.
    Kliazovich, D., Bouvry, P., Khan, S.U.: GreenCloud: a packet-level simulator of energy-aware cloud computing data centers. J. Supercomp., special issue on Green Networks, 2011 Google Scholar
  21. 21.
    Kopparapu, C.: Load Balancing Servers, Firewalls, and Caches Wiley, New York (2002) Google Scholar
  22. 22.
    Li, B., Li, J., Huai, J., Tianyu, W., Li, Q., Zhong, L.: EnaCloud: an energy-saving application live placement approach for cloud computing environments. In: IEEE International Conference on Cloud Computing, Bangalore, India, 2009 Google Scholar
  23. 23.
    Liu, J., Zhao, F., Liu, X., He, W.: Challenges towards elastic power management in Internet data centers. In: Proceedings of the 2nd International Workshop on Cyber-Physical Systems (WCPS 2009) in conjunction with ICDCS 2009, Montreal, Quebec, Canada, June 2009 Google Scholar
  24. 24.
    Mahadevan, P., Sharma, P., Banerjee, S., Ranganathan, P.: Energy aware network operations. In: IEEE INFOCOM Workshops, pp. 1–6 (2009) CrossRefGoogle Scholar
  25. 25.
    Mahadevan, P., Sharma, P., Banerjee, S., Ranganathan, P.: A power benchmarking framework for network devices. In: Proceedings of the 8th International IFIP-TC 6 Networking Conference, Aachen, Germany, 11-15 May 2009 Google Scholar
  26. 26.
    Meng, X., Pappas, V., Zhang, L.: Improving the scalability of data center networks with traffic-aware virtual machine placement. In: IEEE INFOCOM, San Diego, California, March 2010 Google Scholar
  27. 27.
    Pouwelse, J., Langendoen, K., Sips, H.: Energy priority scheduling for variable voltage processors. In: International Symposium on Low Power Electronics and Design, pp. 28–33 (2001) Google Scholar
  28. 28.
    Raghavendra, R., Ranganathan, P., Talwar, V., Wang, Z., Zhu, X.: No “power” struggles: Coordinated multi-level power management for the data center. In: APLOS (2008) Google Scholar
  29. 29.
    Shang, L., Peh, L.-S., Jha, K.N.: Dynamic voltage scaling with links for power optimization of interconnection networks. In: Proceedings of the 9th International Symposium on High-Performance Computer Architecture, Table of Contents (2003) Google Scholar
  30. 30.
    Song, Y., Wang, H., Li, Y., Feng, B., Sun, Y.: Multi-tiered on-demand resource scheduling for VM-based data center. In: IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID), pp. 148–155, May 2009 Google Scholar
  31. 31.
    Stage, A., Setzer, T.: Network-aware migration control and scheduling of differentiated virtual machine workloads. In: Proceedings of the 2009 ICSE Workshop on Software Engineering Challenges of Cloud Computing, International Conference on Software Engineering, IEEE Computer Society, Washington, May 2009 Google Scholar
  32. 32.
    Tang, Q., Gupta, S.K.S., Varsamopoulos, G.: Energy-efficient thermal-aware task scheduling for homogeneous high-performance computing data centers: a cyber-physical approach. IEEE Trans. Parallel Distrib. Syst. 19(11), 1458–1472 (2008) CrossRefGoogle Scholar
  33. 33.
    Thaler, D., Hopps, C.: Multipath issues in unicast and multicast nexthop selection. In: Internet Engineering Task Force Request for Comments 2991, November 2000 Google Scholar
  34. 34.
    The Network Simulator Ns2: available at: (2011)
  35. 35.
    Verma, A., Dasgupta, G., Nayak, T., De, P., Kothari, R.: Server workload analysis for power minimization using consolidation. In: USENIX Annual Technical Conference (USENIX’09) (2009) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Dzmitry Kliazovich
    • 1
    Email author
  • Pascal Bouvry
    • 1
  • Samee Ullah Khan
    • 2
  1. 1.University of LuxembourgLuxembourgLuxembourg
  2. 2.North Dakota State UniversityFargoUSA

Personalised recommendations