Cluster Computing

, Volume 13, Issue 3, pp 335–347 | Cite as

A cost-benefit analysis of using cloud computing to extend the capacity of clusters

  • Marcos Dias de AssunçãoEmail author
  • Alexandre di Costanzo
  • Rajkumar Buyya


In this paper, we investigate the benefits that organisations can reap by using “Cloud Computing” providers to augment the computing capacity of their local infrastructure. We evaluate the cost of seven scheduling strategies used by an organisation that operates a cluster managed by virtual machine technology and seeks to utilise resources from a remote Infrastructure as a Service (IaaS) provider to reduce the response time of its user requests. Requests for virtual machines are submitted to the organisation’s cluster, but additional virtual machines are instantiated in the remote provider and added to the local cluster when there are insufficient resources to serve the users’ requests. Naïve scheduling strategies can have a great impact on the amount paid by the organisation for using the remote resources, potentially increasing the overall cost with the use of IaaS. Therefore, in this work we investigate seven scheduling strategies that consider the use of resources from the “Cloud”, to understand how these strategies achieve a balance between performance and usage cost, and how much they improve the requests’ response times.


Cloud computing Load sharing Job scheduling Backfilling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amazon Inc. Amazon Elastic Compute Cloud (Amazon EC2).
  2. 2.
    Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A., Lee, G., Patterson, D.A., Rabkin, A., Stoica, I., Zaharia, M.: Above the clouds: A Berkeley view of Cloud computing. Technical report UCB/EECS-2009-28, Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley, USA, February 2009 Google Scholar
  3. 3.
    Balazinska, M., Balakrishnan, H., Stonebraker, M.: Contract-based load management in federated distributed systems. In: 1st Symposium on Networked Systems Design and Implementation (NSDI), San Francisco, USA, March 2004, pp. 197–210. USENIX Association Google Scholar
  4. 4.
    Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I., Warfield, A.: Xen and the art of virtualization. In: 19th ACM Symposium on Operating Systems Principles (SOSP ’03), pp. 164–177. ACM, New York (2003) CrossRefGoogle Scholar
  5. 5.
    Buyya, R., Murshed, M.: GridSim: a toolkit for the modeling and simulation of distributed resource management and scheduling for Grid computing. Concurr. Comput. 14(13–15), 1175–1220 (2002) zbMATHCrossRefGoogle Scholar
  6. 6.
    Chase, J.S., Irwin, D.E., Grit, L.E., Moore, J.D., Sprenkle, S.E.: Dynamic virtual clusters in a Grid site manager. In: 12th IEEE International Symposium on High Performance Distributed Computing (HPDC 2003), Washington, DC, USA, 2003, p. 90. IEEE Computer Society, Los Alamitos (2003) CrossRefGoogle Scholar
  7. 7.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press/McGraw-Hill, Cambridge/New York (2001) zbMATHGoogle Scholar
  8. 8.
    de Assunção, M.D., Buyya, R., Venugopal, S.: InterGrid: a case for internetworking islands of Grids. Concurr. Comput. 20(8), 997–1024 (2008) CrossRefGoogle Scholar
  9. 9.
    Deelman, E., Singh, G., Livny, M., Berriman, B., Good, J.: The cost of doing science on the cloud: the montage example. In: 2008 ACM/IEEE Conference on Supercomputing (SC 2008), Piscataway, NJ, USA, 2008, pp. 1–12. IEEE Press, New York (2008) Google Scholar
  10. 10.
    di Costanzo, A., de Assunção, M.D., Buyya, R.: Harnessing cloud technologies for a virtualized distributed computing infrastructure. IEEE Int. Comput. 13(5), 24–33 (2009) CrossRefGoogle Scholar
  11. 11.
    Emeneker, W., Jackson, D., Butikofer, J., Stanzione, D.: Dynamic virtual clustering with Xen and Moab. In: Frontiers of High Performance Computing and Networking with ISPA 2006. LNCS, vol. 4331, pp. 440–451. Springer, Berlin/Heidelberg (2006) CrossRefGoogle Scholar
  12. 12.
    England, D., Weissman, J.B.: Costs and benefits of load sharing in the computational Grid. In: 10th International Workshop on Job Scheduling Strategies for Parallel Processing (JSSPP ’04), New York, USA, 2004. LNCS, vol. 3277, pp. 160–175. Springer, Berlin/Heidelberg (2004) Google Scholar
  13. 13.
    Feitelson, D.G., Rudolph, L., Schwiegelshohn, U., Sevcik, K.C., Wong, P.: Theory and practise in parallel job scheduling. In: Job Scheduling Strategies for Parallel Processing (IPPS ’97), London, UK, 1997, pp. 1–34. Springer, Berlin (1997) Google Scholar
  14. 14.
    Fontán, J., Vázquez, T., Gonzalez, L., Montero, R.S., Llorente, I.M.: OpenNEbula: the open source virtual machine manager for cluster computing. In: Open Source Grid and Cluster Software Conference—Book of Abstracts, San Francisco, USA, May 2008 Google Scholar
  15. 15.
    Foster, I., Freeman, T., Keahey, K., Scheftner, D., Sotomayor, B., Zhang, X.: Virtual clusters for Grid communities. In: 6th IEEE International Symposium on Cluster Computing and the Grid (CCGRID 2006), Washington, DC, USA, 2006, pp. 513–520. IEEE Comput. Soc., Los Alamitos (2006) CrossRefGoogle Scholar
  16. 16.
    Grimme, C., Lepping, J., Papaspyrou, A.: Prospects of collaboration between compute providers by means of job interchange. In: Job Scheduling Strategies for Parallel Processing. Lecture Notes in Computer Science, vol. 4942, pp. 132–151. Springer, Berlin/Heidelberg (2008) CrossRefGoogle Scholar
  17. 17.
    Grit, L., Inwin, D., Yumerefendi, A., Chase, J.: Virtual machine hosting for networked clusters: building the foundations for ‘autonomic’ orchestration. In: 1st International Workshop on Virtualization Technology in Distributed Computing (VTDC 2006), Tampa, Florida, November 2006 Google Scholar
  18. 18.
    Iosup, A., Epema, D.H.J., Tannenbaum, T., Farrellee, M., Livny, M.: Inter-operating Grids through delegated matchmaking. In: 2007 ACM/IEEE Conference on Supercomputing (SC 2007), New York, USA, 2007, pp. 1–12. ACM, New York (2007) CrossRefGoogle Scholar
  19. 19.
    Irwin, D., Chase, J., Grit, L., Yumerefendi, A., Becker, D., Yocum, K.G.: Sharing networked resources with brokered leases. In: USENIX Annual Technical Conference, pp. 199–212. Berkeley, USA, June 2006. USENIX Association Google Scholar
  20. 20.
    Islam, M., Balaji, P., Sadayappan, P., Panda, D.K.: QoPS: A QoS based scheme for parallel job scheduling. In: 9th International Workshop on Job Scheduling Strategies for Parallel Processing (JSSPP ’03), Seattle, WA, USA, 2003. LNCS, vol. 2862, pp. 252–268. Springer, Berlin (2003) CrossRefGoogle Scholar
  21. 21.
    Keahey, K., Foster, I., Freeman, T., Zhang, X.: Virtual workspaces: Achieving quality of service and quality of life in the Grids. Sci. Program. 13(4), 265–275 (2006) Google Scholar
  22. 22.
    Lifka, D.A.: The ANL/IBM SP scheduling system. In: Workshop on Job Scheduling Strategies for Parallel Processing (IPPS’95), London, UK, 1995, pp. 295–303. Springer, Berlin (1995) Google Scholar
  23. 23.
    Lublin, U., Feitelson, D.G.: The workload on parallel supercomputers: Modeling the characteristics of rigid jobs. J. Parallel Distrib. Comput. 63(11), 1105–1122 (2003) zbMATHCrossRefGoogle Scholar
  24. 24.
    Montero, R.S., Huedo, E., Llorente, I.M.: Dynamic deployment of custom execution environments in Grids. In: 2nd International Conference on Advanced Engineering Computing and Applications in Sciences (ADVCOMP ’08), Valencia, Spain, 2008, pp. 33–38. IEEE Comp. Soc., Los Alamitos (2008) CrossRefGoogle Scholar
  25. 25.
    Mu’alem, A.W., Feitelson, D.G.: Utilization, predictability, workloads, and user runtime estimates in scheduling the IBM SP2 with backfilling. IEEE Trans. Parallel Distrib. Syst. 12(6), 529–543 (2001) CrossRefGoogle Scholar
  26. 26.
    Nurmi, D., Wolski, R., Crzegorczyk, C., Obertelli, G., Soman, S., Youseff, L., Zagorodnov, D.: Eucalyptus: a technical report on an elastic utility computing architecture linking your programs to useful systems. Technical Report 2008-10, Department of Computer Science, University of California, Santa Barbara, CA, USA (2008) Google Scholar
  27. 27.
    Palankar, M.R., Iamnitchi, A., Ripeanu, M., Garfinkel, S.: Amazon S3 for science Grids: a viable solution?. In: International Workshop on Data-Aware Distributed Computing (DADC’08) in Conjunction with HPDC 2008, New York, NY, USA, 2008, pp. 55–64. ACM, New York (2008) CrossRefGoogle Scholar
  28. 28.
    Ramakrishnan, L., Irwin, D., Grit, L., Yumerefendi, A., Iamnitchi, A., Chase, J.: Toward a doctrine of containment: grid hosting with adaptive resource control. In: 2006 ACM/IEEE Conference on Supercomputing (SC 2006), New York, NY, USA, 2006, p. 101. ACM, New York (2006) CrossRefGoogle Scholar
  29. 29.
    Rubio-Montero, A., Huedo, E., Montero, R., Llorente, I.: Management of virtual machines on globus grids using GridWay. In: IEEE International Parallel and Distributed Processing Symposium (IPDPS 2007), Long Beach, USA, March 2007, pp. 1–7. IEEE Comput. Soc., Los Alamitos (2007) CrossRefGoogle Scholar
  30. 30.
    Ruth, P., McGachey, P., Xu, D.: VioCluster: virtualization for dynamic computational domain. In: IEEE International on Cluster Computing (Cluster 2005), pp. 1–10, Burlington, USA, September 2005. IEEE Google Scholar
  31. 31.
    Shoykhet, A., Lange, J., Dinda, P.: Virtuoso: a system for virtual machine marketplaces. Technical Report NWU-CS-04-39, Electrical Engineering and Computer Science Department, Northwestern University, Evanston/Chicago, IL, July 2004 Google Scholar
  32. 32.
    Singh, G., Kesselman, C., Deelman, E.: Adaptive pricing for resource reservations in shared environments. In: 8th IEEE/ACM International Conference on Grid Computing (Grid 2007) (Austin, USA, September 2007), pp. 74–80. ACM/IEEE, New York (2007) Google Scholar
  33. 33.
    Sotomayor, B., Keahey, K., Foster, I.: Combining batch execution and leasing using virtual machines. In: 17th International Symposium on High performance Distributed Computing (HPDC 2008), New York, NY, USA, 2008, pp. 87–96. ACM, New York (2008) CrossRefGoogle Scholar
  34. 34.
    Srinivasan, S., Kettimuthu, R., Subramani, V., Sadayappan, P.: Selective reservation strategies for backfill job scheduling. In: 8th International Workshop on Job Scheduling Strategies for Parallel Processing (JSSPP ’02), London, UK, 2002. LNCS, vol. 2537, pp. 55–71. Springer, Berlin/Heidelberg (2002) CrossRefGoogle Scholar
  35. 35.
    Surana, S., Godfrey, B., Lakshminarayanan, K., Karp, R., Stoica, I.: Load balancing in dynamic structured peer-to-peer systems. Perform. Eval. 63(3), 217–240 (2006) CrossRefGoogle Scholar
  36. 36.
    Tatezono, M., Maruyama, N., Matsuoka, S.: Making wide-area, multi-site MPI feasible using Xen VM. In: Workshop on Frontiers of High Performance Computing and Networking (held with ISPA 2006). LNCS, vol. 4331, pp. 387–396. Springer, Berlin/Heidelberg (2006) CrossRefGoogle Scholar
  37. 37.
    Wang, Y.-T., Morris, R.J.T.: Load sharing in distributed systems. IEEE Trans. Comput. C-34(3), 204–217 (1985) CrossRefGoogle Scholar
  38. 38.
    Weiss, A.: Computing in the Clouds. netWorker 11(4), 16–25 (2007) CrossRefGoogle Scholar
  39. 39.
    Wolski, R., Plank, J.S., Brevik, J., Bryan, T.: Analyzing market-based resource allocation strategies for the computational Grid. Int. J. High Perform. Comput. Appl. 15(3), 258–281 (2001) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Marcos Dias de Assunção
    • 1
    Email author
  • Alexandre di Costanzo
    • 2
  • Rajkumar Buyya
    • 2
  1. 1.INRIA RESO/LIPÉcole Normale Supérieure de LyonLyon Cedex 07France
  2. 2.The University of MelbourneMelbourneAustralia

Personalised recommendations