Cluster Computing

, 12:357 | Cite as

Research advances by using interoperable e-science infrastructures

The infrastructure interoperability reference model applied in e-science
  • Morris RiedelEmail author
  • Felix Wolf
  • Dieter Kranzlmüller
  • Achim Streit
  • Thomas Lippert


Computational simulations and thus scientific computing is the third pillar alongside theory and experiment in todays science. The term e-science evolved as a new research field that focuses on collaboration in key areas of science using next generation computing infrastructures (i.e. co-called e-science infrastructures) to extend the potential of scientific computing. During the past years, significant international and broader interdisciplinary research is increasingly carried out by global collaborations that often share a single e-science infrastructure. More recently, increasing complexity of e-science applications that embrace multiple physical models (i.e. multi-physics) and consider a larger range of scales (i.e. multi-scale) is creating a steadily growing demand for world-wide interoperable infrastructures that allow for new innovative types of e-science by jointly using different kinds of e-science infrastructures. But interoperable infrastructures are still not seamlessly provided today and we argue that this is due to the absence of a realistically implementable infrastructure reference model. Therefore, the fundamental goal of this paper is to provide insights into our proposed infrastructure reference model that represents a trimmed down version of ogsa in terms of functionality and complexity, while on the other hand being more specific and thus easier to implement. The proposed reference model is underpinned with experiences gained from e-science applications that achieve research advances by using interoperable e-science infrastructures.

e-Science Infrastructures hpc htc Interoperability Reference Model e-Health 


  1. 1.
    Alfieri, R., et al.: From gridmap-file to voms: managing authorization in a grid environment. Future Gener. Comput. Syst. 21(4), 549–558 (2005) CrossRefGoogle Scholar
  2. 2.
    Andreozzi, S., et al.: GLUE Specification v.2.0. OGF Grid final document Nr 147 (2009) Google Scholar
  3. 3.
    Andrieux, A., et al.: Web services agreement specification (WS-Agreement). OGF Grid Final Document Nr. 107 (2007) Google Scholar
  4. 4.
    Anjomshoaa, A., et al.: Job submission description language (JSDL) specification, Version 1.0. OGF Grid Final Document Nr. 136 (2008) Google Scholar
  5. 5.
    Cantor, S., Kemp, J., Philpott, R., Maler, E.: Assertions and protocols for the OASIS security assertion markup language. OASIS Standard (2005). Http://
  6. 6.
    Chandra, R., et al.: Parallel Programming in OpenMP. Morgan, San Mateo (2001) ISBN 1-55860-671-8 Google Scholar
  7. 7.
    Foster, I.: Globus toolkit version 4: Software for service-oriented science. In: Proceedings of IFIP International Conference on Network and Parallel Computing. Lecture Notes in Computer Science, vol. 3779, pp. 213–223. Springer, Berlin (2005) Google Scholar
  8. 8.
    Foster, I., et al.: Open grid services architecture (OGSA), Version 1.5. OGF Grid Final Document Nr. 80 (2006) Google Scholar
  9. 9.
    Foster, I., et al.: OGSA basic execution service, Version 1.0. OGF Grid Final Document Nr. 108 (2007) Google Scholar
  10. 10.
    Jordan, C., et al.: Defining the grid: A roadmap for OGSA standards v.1.1. OGF Grid Final Document Nr. 123 (2008) Google Scholar
  11. 11.
    Kacsuk, P., et al.: Towards making BOINC and EGEE interoperable. In: Proc. of the IGGIW Workshop, e-Science Conference, Indianapolis, USA (2008) Google Scholar
  12. 12.
    Kryza, B., Skital, L., Kitowski, J., Li, M., Itagaki, T.: Analysis of Interoperability Issues Between EGEE and VEGA Grid Infrastructures. Springer, Berlin (2006) Google Scholar
  13. 13.
    Laure, E., et al.: Programming the grid with gLite. In: Computational Methods in Science and Technology, pp. 33–46 (2006) Google Scholar
  14. 14.
    Mach, R., et al.: Usage record—Format recommendation. OGF Grid Final Document Nr. 98 (2007) Google Scholar
  15. 15.
    Mandrichenko, I., et al.: GridFTP v2 protocol description. OGF Grid Final Document Nr. 47 (2005) Google Scholar
  16. 16.
    Manos, S., et al.: Patient specific whole cerebral blood flow simulation: A future role in surgical treatment for neurovascular pathologies. In: Proc. of the TeraGrid 2008 Conference, Virginia, USA (2008) Google Scholar
  17. 17.
    Moses, T., et al.: eXtensible Access Control Markup Language. OASIS Standard (2005) Google Scholar
  18. 18.
    Pacheco, P.: Parallel Programming with MPI. Morgan Kaufmann, San Mateo (1996). ISBN 1558603395 Google Scholar
  19. 19.
    Rastelli, G., et al.: Validation of an automated procedure for the prediction of relative free energies of binding on a set of aldose reductase inhibitors. Bioorganic Medicinal Chem. 15(24) (2007) Google Scholar
  20. 20.
    Ratering, R., et al.: GridBeans: Supporting e-science and grid applications. In: 2nd IEEE International Conference on e-Science and Grid Computing (E-Science 2006), Amsterdam, The Netherlands (2006) Google Scholar
  21. 21.
    Riedel, M., Laure, E., et al.: Interoperation of world-wide production e-science infrastructures. J. Concurr. Comput. Pract. Experience (2008) Google Scholar
  22. 22.
    Riedel, M., et al.: Improving e-science with interoperability of the e-infrastructures EGEE and DEISA. In: Proceedings of the MIPRO (2007) Google Scholar
  23. 23.
    Riedel, M., et al.: Classification of different approaches for e-science applications in next generation computing infrastructures. In: Proceedings of the Int. e-Science Conference, Indianapolis, USA (2008) Google Scholar
  24. 24.
    Riedel, M., et al.: Experiences and requirements for interoperability between HTC- and HPC-driven e-science infrastructures. In: Proceedings of the Workshop HPC for e-Science, Korea e-Science All Hands Meeting (2008) Google Scholar
  25. 25.
    Riedel, M., et al.: Concepts and design of an interoperability reference model for scientific- and grid computing infrastructures. In: Proceedings of the Applied Computing Conference, Athens, Greece (2009) Google Scholar
  26. 26.
    Rob, V., et al.: User-friendly and reliable grid computing based on imperfect middleware. In: Proceedings of the International Supercomputing Conference 200, Reno, USA (2007) Google Scholar
  27. 27.
    Rodero, I., et al.: Modeling and evaluating interoperable grid systems. In: Proc. of the IGGIW Workshop, e-Science Conference 2008, Indianapolis, USA (2008) Google Scholar
  28. 28.
    Sim, A., et al.: The storage resource manager interface specification, Version 2.2. OGF Grid Final Document Nr. 129 (2008) Google Scholar
  29. 29.
    STEP-Consortium: Seeding the EuroPhysiome: A roadmap to the virtual physiological human (VPH). Http://
  30. 30.
    Stone, D., et al.: A model for transparent grid interoperability. In: Proc. of the CCGrid 2007 Conference (2007) Google Scholar
  31. 31.
    Streit, A., et al.: UNICORE - From project results to production grids. In: Grandinetti, L. (ed.) Grid Computing: The New Frontiers of High Performance Processing. Advances in Parallel Computing, vol. 14, pp. 357–376. Elsevier, Amsterdam (2005) CrossRefGoogle Scholar
  32. 32.
    Taylor, J.: enhanced-Science (e-Science) definition. Http://
  33. 33.
    Ciachini, V., Venturi, A.C.: The VOMS attribute certificate format. Technical Report, OGSA Authorization Working Group (2005) Google Scholar
  34. 34.
    Website: AMBER. Http://
  35. 35.
    Website: AUTODOCK. Http://
  36. 36.
  37. 37.
    Website: EUFORIA - Project. Http://
  38. 38.
  39. 39.
    Website: GridSphere. Http://
  40. 40.
    Website: International grid interoperability and interoperation workshop (igiiw). Http://
  41. 41.
    Website: OGF - Production grid infrastructure working group (PGI-WG). Http://
  42. 42.
    Website: SHARE - Project. Http://
  43. 43.
    Website: Virtual physiological human (VPH). Http://

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Morris Riedel
    • 1
    Email author
  • Felix Wolf
    • 1
  • Dieter Kranzlmüller
    • 2
  • Achim Streit
    • 1
  • Thomas Lippert
    • 1
  1. 1.Jülich Supercomputing CentreForschungszentrum JülichJülichGermany
  2. 2.Ludwig Maximillians University MunichMunichGermany

Personalised recommendations