Cluster Computing

, Volume 10, Issue 1, pp 17–31 | Cite as

Performance analysis of buffer allocation schemes under MMPP and Poisson traffic with individual thresholds

Article

Abstract

Various buffer management and congestion control mechanisms have been proposed to support differentiated Quality-of-Service (QoS) requirements due to the heterogeneous properties of real-world network traffic and applications. Active Queue Management (AQM) with multiple thresholds, which starts dropping packets before the queue becomes full in order to notify incipient stages of congestion, is a promising buffer allocation mechanism. With the aim to capture the effects of heterogeneous traffic and justify the choice of appropriate parameters, this paper develops an original analytical model for a finite buffer queueing system with AQM under two heterogeneous classes of traffic which are modelled, respectively, by the non-bursty Poisson Process and bursty Markov-Modulated Poisson Process (MMPP). We derive the aggregated and marginal performance metrics including the mean queue length, response time, utilization, throughput, and loss probability. Extensive simulation experiments are used to validate the accuracy of the analytical model. Furthermore the model is adopted to evaluate the performance of AQM with heterogeneous traffic and under different working conditions.

Keywords

Congestion control Active queue management Traffic modelling Bursty traffic MMPP 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cidon, I., Rom, R., Gupta, A., Schuba, C.: Hybrid TCP-UDP transport for Web traffic. In: Proc. IEEE International Performance, Computing and Communications Conference, 1999, pp. 177–184 Google Scholar
  2. 2.
    Rabinovich, M., Wang, H.: DHTTP: an efficient and cache-friendly transfer protocol for the web. IEEE/ACM Trans. Netw. 12(6), 1007–1020 (2004) CrossRefGoogle Scholar
  3. 3.
    Ke, J., Williamson, C.: Towards a rate-based TCP protocol for the web. In: Proc. International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems, 8th edn., pp. 36–45. IEEE Computer Society, Washington, USA (2000) Google Scholar
  4. 4.
    Chen, H., Mohapatra, P.: CATP: a context-aware transportation protocol for HTTP. In: Proceeding of the 23rd International Conference on Distributed Computing Systems Workshops (ICDCSW’03), 2003, pp. 922–927 Google Scholar
  5. 5.
    Claypool, M., Kinicki, R., Hartling, M.: Active queue management for web traffic. In: Proc. 23rd IEEE International Performance, Computing and Communications Conference (IPCCC), Phoenix, Arizona, USA, 2004, pp. 531–538 Google Scholar
  6. 6.
    Brandauer, C., Iannaccone, G., Diot, C., Ziegler, T., Fdida, S., May, M.: Comparison of tail drop and active queue management performance for bulk-date and web-like Internet traffic. In: Proc. ISCC, Hammamet, Tunisia, 2001, pp. 122–129 Google Scholar
  7. 7.
    Floyd, S., Jacobson, V.: Random early detection gateways for congestion avoidance. IEEE/ACM Trans. Netw. 1(4), 397–413 (1993) CrossRefGoogle Scholar
  8. 8.
    Hasegawa, G., Murata, M.: Analysis of dynamic behaviors of many TCP connections sharing Tail-Drop/RED routers. In: Proc. IEEE GLOBECOM, San Antonio, Texas, 2001, 1(6), pp. 1811–1815 Google Scholar
  9. 9.
    Braden, B., Clark, D., Crowcroft, J., Davie, B., Deering, S., Estrin, D., Floyd, S., Jacobson, V., Minshall, G., Partridge, C., Peterson, L., Ramakrishnan, K., Shenker, S., Wroclawski, J., Zhang, L.: Recommendations on queue management and congestion avoidance in the Internet. IETF RFC2039, 1998 Google Scholar
  10. 10.
    Jiang, K., Wang, X., Xi, Y.: Nonlinear analysis of RED—a comparative study. In: Proceeding of the American Control Conference, Boston, Massachusetts, 2004, vol. 4, pp. 2960–2965 Google Scholar
  11. 11.
    Floyd, S., Gummadi, R., Shenker, S.: Adaptive RED: an algorithm for increasing the robustness of RED’s active queue management, http://www.icir.org/floyd/papers/adaptiveRed.pdf, 2001
  12. 12.
    Floyd, S.: Recommendation on using the “gentle_” variant of RED, http://www.icir.org/floyd/red/gentle.html, 1993
  13. 13.
    May, M., Diot, C., Lyles, B., Bolot, J.: Influence of active queue management parameters on aggregate traffic performance, INRIA.RR3995, 2000 Google Scholar
  14. 14.
    Floyd, S.: RED: discussions of setting parameters, http://www.icir.org/floyd/REDparameters.txt, 1997
  15. 15.
    Floyd, S., Fall, K.: Promoting the use of end-to-end congestion control in the Internet. IEEE/ACM Trans. Netw. 7(4), 485–472 (1999) CrossRefGoogle Scholar
  16. 16.
    Kuuela, P., Virtamo, J.T.: Modeling RED with two traffic classes. In: Proc. NTS-15, 2000, pp. 271–282 Google Scholar
  17. 17.
    Bonald, T., May, M., Bolot, J.C.: Analytic evaluation of RED performance. In: Proc. IEEE INFOCOM, 2000, pp. 1415–1424 Google Scholar
  18. 18.
    Lee, H.W., Seo, W.J., Yoon, S.H.: An analysis of multiple-class vacation queues with individual thresholds. Oper. Res. Lett. 28(1), 35–49 (2001) MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Fischer, W., Merier-Hellstern, K.: The Markov-modulated Poisson process (MMPP) cookbook. Perform. Evaluation 18(2), 149–171 (1993) MATHCrossRefGoogle Scholar
  20. 20.
    Kleinrock, L.: Queueing Systems: Compute Applications, vol. 1. Wiley, New York (1975) Google Scholar
  21. 21.
    Min, G., Ould-Khaoua, M.: Performance modelling and evaluation of virtual channels in multicomputer networks with bursty traffic. Perform. Evaluation 58(2–3), 143–162 (2004) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Computing, School of InformaticsUniversity of BradfordBradfordUK

Personalised recommendations