Cluster Computing

, Volume 8, Issue 4, pp 243–253 | Cite as

A Collaborative Informatics Infrastructure for Multi-Scale Science

  • James D. Myers
  • Thomas C. Allison
  • Sandra Bittner
  • Brett Didier
  • Michael Frenklach
  • William H. GreenJr.
  • Yen-Ling Ho
  • John Hewson
  • Wendy Koegler
  • Carina Lansing
  • David Leahy
  • Michael Lee
  • Renata McCoy
  • Michael Minkoff
  • Sandeep Nijsure
  • Gregor von Laszewski
  • David Montoya
  • Luwi Oluwole
  • Carmen Pancerella
  • Reinhardt Pinzon
  • William Pitz
  • Larry A. Rahn
  • Branko Ruscic
  • Karen Schuchardt
  • Eric Stephan
  • A. Wagner
  • Theresa Windus
  • Christine Yang
Article

Abstract

The Collaboratory for Multi-scale Chemical Science (CMCS) is developing a powerful informatics-based approach to synthesizing multi-scale information in support of systems-based research and is applying it within combustion science. An open source multi-scale informatics toolkit is being developed that addresses a number of issues core to the emerging concept of knowledge grids including provenance tracking and lightweight federation of data and application resources into cross-scale information flows. The CMCS portal is currently in use by a number of high-profile pilot groups and is playing a significant role in enabling their efforts to improve and extend community maintained chemical reference information.

Keywords

collaboratory knowledge grid provenance multi-scale data system science community data cyberenvironment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Apache Axis Website, http://ws.apache.org/axis/ (2004) Apache Jakarta Project.
  2. [2]
    A Science-Based Case for Large-Scale Simulation, Volume 1, http://www.pnl.gov/scales/docs/volume1_300dpi.pdf Proceedings of the Workshop on the Science Case for Large-scale Simulation, (2003. Arlington, Virginia: Office of Science, Department of Energy).
  3. [3]
    R.S. Barlow, Turbulent Nonpremixed Flame (TNF) Workshop, http://www.ca.sandia.gov/TNF/ This site provides links to good examples of data that the international community is posting to validate combustion models.
  4. [4]
    Binita Bhattacharjee, Douglas A. Schwer, Paul I. Barton and William H. Green, Jr., Optimally-reduced kinetic models: reaction elimination in large-scale kinetic mechanisms, Combustion and Flame (2003).Google Scholar
  5. [5]
    BioSPICE Website, https://biospice.org/ (2004) DARPA.
  6. [6]
    G. Black, D. Gracio, K. Schuchardt and B Palmer, The extensible computational chemistry environment: A problem solving environment for high performance theoretical chemistry, in Proceedings of Computational Science - ICCS 2003, International Conference, eds. P.M.A. Sloot, D. Abramson, A. Bogdanov, J.J. Dongarra, A. Zomaya, and Y. Gorbachev, Vol. 2660, Lecture Notes in Computer Science Springer-Verlag, Berlin (2003).Google Scholar
  7. [7]
    P. Buneman, S. Khanna and W.C. Tan, Why and where: A characterization of data provenance, in: Proceedings of the International Conference on Database Theory (ICDT), 2001.Google Scholar
  8. [8]
    CHEF Collaborative Portal Framework Website, CHEF Collaborative Portal Framework Website, http://www.chefproject.org/, University of Michigan (2004).
  9. [9]
    Patrick Collins, PerlDAV: A WebDAV client library for Perl5, http://www.webdav.org/perldav/ (2001).
  10. [10]
    Commodity Grid Kits, http://www-unix.globus.org/cog/ (2004) University of Chicago.
  11. [11]
    Davfs WebDAV Linux File System, http://dav.sourceforge.net/
  12. [12]
    Dublin Core Website, http://www.dublincore.org/ (2004) Dublin Core Metadata Initiative.
  13. [13]
    EMSL Computational Results Database (CRDB), http://www.emsl.pnl.gov/proj/crdb/.2004, Pacific Northwest National Laboratory.
  14. [14]
    A. Gupta, B. Ludäscher and M.E. Martone, Knowledge-based integration of neuroscience data sources, in: 12th Intl. Conference on Scientific and Statistical Database Management (SSDBM), Berlin, Germany, IEEE Computer Society, (July 2000).Google Scholar
  15. [15]
    Information and Communications: Challenges for the Chemical Sciences in the 21st Century. 2003, Washington, D.C.: National Academy Press.Google Scholar
  16. [16]
    IUPAC Project 2000-013-1-100, http://iupac.chemsoc.org/projects/2000/2000-013-1-100.html, continued as 2003-024-1-100, http://www.iupac.org/projects/2003/2003-024-1-100.html 2003, International Union of Pure and Applied Chemistry.
  17. [17]
    Jakarta Slide Java Content Management System Website, http://jakarta.apache.org/slide/ (2004) Apache Jakarta Project.
  18. [18]
    Jetspeed, an Open Source implementation of an Enterprise Information Portal, using Java and XML, http://jakarta.apache.org/jetspeed/site/, Apache Jakarta Project (2003).
  19. [19]
    A.N. Karpetis and R.S. Barlow, Measurements of scalar dissipation in a turbulent piloted methane/air jet flame. Proc. Combust. Inst., 29 (2002) 1929–1936.Google Scholar
  20. [20]
    Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira Lopes, Jean-Marc Loingtier and John Irwin, Aspect oriented programming, in: Proceedings of the European Conference on Object-Oriented Programming (ECOOP), Finland. Springer-Verlag LNCS 1241. 1997).Google Scholar
  21. [21]
    W. Koegler, Case study: Application of feature tracking to analysis of autoignition simulation data. 12th IEEE Visualization 2001 Conference (VIS 2001), San Diego, CA 2001.Google Scholar
  22. [22]
    J.D. Myers, A. Chappell, M. Elder, A. Geist and J. Schwidder, Re-integrating the research record. IEEE Computing in Science and Engineering, Available at http://www.scidac.org/SAM/ 5(3) (2003) 44–50.
  23. [23]
    J. Myers, E. Mendoza and B. Hoopes, A collaborative electronic notebook, in: Proceedings of the IASTED International Conference on Internet and Multimedia Systems and Applications (IMSA 2001), Honolulu, Hawaii (2001).Google Scholar
  24. [24]
    J.D. Myers, C. Pancerella, C. Lansing, K.L. Schuchardt and B. Didier, Multi-scale science: Supporting emerging practice with semantically-derived provenance, Proceedings of the Workshop on Semantic Web Technologies for Searching and Retrieving Scientific Data, held at the 2nd International Semantic Web Conference, Sanibel Island, Florida (2003).Google Scholar
  25. [25]
    Neon: an HTTP and WebDAV client library, with a C interface, http://www.webdav.org/neon/.
  26. [26]
    NIST Chemical Kinetics Database, Standard Reference Database 17, http://kinetics.nist.gov/index.php 2000, National Institute of Standards and Technology.
  27. [27]
  28. [28]
    OpenJMS Website, http://openjms.sourceforge.net/ (2004) The OpenJMS Group.
  29. [29]
  30. [30]
    Particle Physics Data Grid (PPDG) Website, http://www.ppdg.net/ (2004) DOE.
  31. [31]
    C.M. Pancerella, J.D. Myers, et. al., Metadata in the collaboratory for multi-scale chemical science, in: Proceedings of the 2003 Dublin Core Conference: Supporting Communities of Discourse and Practice-Metadata Research and Applications (DC 2003), Seattle, Washington (2003).Google Scholar
  32. [32]
    K.L. Schuchardt, J.D. Myers and E.G. Stephan, A web-based data architecture for problem solving environments: Application of distributed authoring and versioning to the extensible computational chemistry environment, Cluster Computing 5 (2002) 287–296.CrossRefGoogle Scholar
  33. [33]
    Scientific Discovery through Advanced Computing (SciDAC), http://www.osti.gov/scidac/SciDAC.pdf (2000) Office of Science, Department of Energy.
  34. [34]
    G. Stein, Web Digital Authoring and Versioning (WebDAV) Resources Community Website, http://www.webdav.org/ (2004).
  35. [35]
    R.D. Stevens, A.J. Robinson and C.A. Goble, myGrid: personalised bioinformatics on the information grid, Bioinformatics, Eleventh International Conference on Intelligent Systems for Molecular Biology, 19 (Suppl. 1) (2003).Google Scholar
  36. [36]
    The Collaboratory for Multi-scale Chemical Science Website, http://cmcs.org/ (2004) Sandia National Laboratories.
  37. [37]
    The Earth System Grid (ESG) Website, https://www.earthsystemgrid.org/ (2004) DOE.
  38. [38]
    The National Fusion Grid Website, http://www.fusiongrid.org/projects/ (2004) DOE.
  39. [39]
    G. von Laszewski, B. Ruscic, P. Wagstrom, S. Krishnan, K. Amin, S. Nijsure, S. Bittner, R. Pinzon, J.C. Hewson, M.L. Morton, M. Minkoff and A.F. Wagner, A grid service-based active thermochemical table framework. Lecture Notes in Computer Science (2003) 2536: 25–38.Google Scholar
  40. [40]
    WebDrive, http://www.webdrive.com/ (2004) South River Technologies.
  41. [41]
    Workflow in Grid Systems, Workshop, Global Grid Forum 10, Berlin, Germany, 9, (2004).Google Scholar
  42. [42]
    XML Linking Language (XLink) Version 1.0, http://www.w3.org/TR/xlink/ (2001) World Wide Web Consortium (W3C).

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • James D. Myers
    • 1
  • Thomas C. Allison
    • 2
  • Sandra Bittner
    • 3
  • Brett Didier
    • 4
  • Michael Frenklach
    • 5
  • William H. GreenJr.
    • 2
  • Yen-Ling Ho
    • 6
  • John Hewson
    • 7
  • Wendy Koegler
    • 7
  • Carina Lansing
    • 3
  • David Leahy
    • 7
  • Michael Lee
    • 7
  • Renata McCoy
    • 4
  • Michael Minkoff
    • 3
  • Sandeep Nijsure
    • 3
  • Gregor von Laszewski
    • 3
  • David Montoya
    • 6
  • Luwi Oluwole
    • 8
  • Carmen Pancerella
    • 7
  • Reinhardt Pinzon
    • 3
  • William Pitz
    • 9
  • Larry A. Rahn
    • 7
  • Branko Ruscic
    • 3
  • Karen Schuchardt
    • 4
  • Eric Stephan
    • 4
  • A. Wagner
    • 3
  • Theresa Windus
    • 4
  • Christine Yang
    • 7
  1. 1.National Center for Supercomputing ApplicationsChampaign-Urbana
  2. 2.NISTGaithersburg
  3. 3.Argonne National LaboratoryArgonne
  4. 4.Pacific Northwest National LaboratoryRichland
  5. 5.University of CaliforniaBerkeley
  6. 6.Los Alamos National LaboratoryLos Alamos
  7. 7.Sandia National LaboratoriesLivermore
  8. 8.MITCambridge
  9. 9.Lawrence Livermore National LaboratoryLivermore

Personalised recommendations