Advertisement

Clinical & Experimental Metastasis

, Volume 36, Issue 2, pp 71–86 | Cite as

Cancer-associated fibroblasts: how do they contribute to metastasis?

  • Mei Qi Kwa
  • Kate M. Herum
  • Cord BrakebuschEmail author
Review

Abstract

Cancer-associated fibroblasts (CAFs) are activated fibroblasts in the tumor microenvironment. They are one of the most prominent cell types in the stroma and produce large amounts of extracellular matrix molecules, chemokines, cytokines and growth factors. Importantly, CAFs promote cancer progression and metastasis by multiple pathways. This, together with their genetic stability, makes them an interesting target for cancer therapy. However, CAF heterogeneity and limited knowledge about the function of the different CAF subpopulations in vivo, are currently major obstacles for identifying specific molecular targets that are of value for cancer treatment. In this review, we discuss recent major findings on CAF development and their metastasis-promoting functions, as well as open questions to be addressed in order to establish successful cancer therapies targeting CAFs.

Keywords

Cancer associated fibroblasts Metastasis Desmoplasia Premetastatic niche 

Notes

Acknowledgements

MQK is supported by a Marie-Curie post doc fellowship of the European Commission and MKH by a post doc fellowship from the Norwegian Research Council.

References

  1. 1.
    Harbeck N, Gnant M (2017) Breast cancer. Lancet 389(10074):1134–1150Google Scholar
  2. 2.
    Loibl S, Gianni L (2017) HER2-positive breast cancer. Lancet 389(10087):2415–2429Google Scholar
  3. 3.
    Apperley JF (2015) Chronic myeloid leukaemia. Lancet 385(9976):1447–1459Google Scholar
  4. 4.
    Konieczkowski DJ, Johannessen CM, Garraway LA (2018) A convergence-based framework for cancer drug resistance. Cancer Cell 33(5):801–815Google Scholar
  5. 5.
    Valkenburg KC, de Groot AE, Pienta KJ (2018) Targeting the tumour stroma to improve cancer therapy. Nat Rev Clin Oncol 15(6):366–381Google Scholar
  6. 6.
    Karagiannis GS et al (2012) Cancer-associated fibroblasts drive the progression of metastasis through both paracrine and mechanical pressure on cancer tissue. Mol Cancer Res 10(11):1403–1418Google Scholar
  7. 7.
    Rosen LS, Jacobs IA, Burkes RL (2017) Bevacizumab in colorectal cancer: current role in treatment and the potential of biosimilars. Target Oncol 12(5):599–610Google Scholar
  8. 8.
    Verdaguer H, Tabernero J, Macarulla T (2016) Ramucirumab in metastatic colorectal cancer: evidence to date and place in therapy. Ther Adv Med Oncol 8(3):230–242Google Scholar
  9. 9.
    Eggermont AM et al (2016) Prolonged survival in stage III melanoma with ipilimumab adjuvant therapy. N Engl J Med 375(19):1845–1855Google Scholar
  10. 10.
    Weber J et al (2017) Adjuvant nivolumab versus ipilimumab in resected stage III or IV melanoma. N Engl J Med 377(19):1824–1835Google Scholar
  11. 11.
    Chen X, Song E (2019) Turning foes to friends: targeting cancer-associated fibroblasts. Nat Rev Drug Discov 18:99–115Google Scholar
  12. 12.
    Affo S, Yu LX, Schwabe RF (2017) The role of cancer-associated fibroblasts and fibrosis in liver cancer. Annu Rev Pathol 12:153–186Google Scholar
  13. 13.
    Barbazán J, Matic Vignjevic D (2019) Cancer associated fibroblasts: is the force the path to the dark side? Curr Opin Cell Biol 56:71–79Google Scholar
  14. 14.
    LeBleu VS, Kalluri R (2018) A peek into cancer-associated fibroblasts: origins, functions and translational impact. Dis Model Mech.  https://doi.org/10.1242/dmm.029447 Google Scholar
  15. 15.
    Ishii G, Ochiai A, Neri S (2016) Phenotypic and functional heterogeneity of cancer-associated fibroblast within the tumor microenvironment. Adv Drug Deliv Rev 99(Pt B):186–196Google Scholar
  16. 16.
    Ashida S et al (2012) Integrated analysis reveals critical genomic regions in prostate tumor microenvironment associated with clinicopathologic phenotypes. Clin Cancer Res 18(6):1578–1587Google Scholar
  17. 17.
    Bianchi-Frias D et al (2016) Cells comprising the prostate cancer microenvironment lack recurrent clonal somatic genomic aberrations. Mol Cancer Res 14(4):374–384Google Scholar
  18. 18.
    Qiu W et al (2008) No evidence of clonal somatic genetic alterations in cancer-associated fibroblasts from human breast and ovarian carcinomas. Nat Genet 40(5):650–655Google Scholar
  19. 19.
    Bechtel W et al (2010) Methylation determines fibroblast activation and fibrogenesis in the kidney. Nat Med 16(5):544–550Google Scholar
  20. 20.
    Albrengues J et al (2015) Epigenetic switch drives the conversion of fibroblasts into proinvasive cancer-associated fibroblasts. Nat Commun 6:10204Google Scholar
  21. 21.
    Pidsley R et al (2018) Enduring epigenetic landmarks define the cancer microenvironment. Genome Res 28(5):625–638Google Scholar
  22. 22.
    Costa A et al (2018) Fibroblast heterogeneity and immunosuppressive environment in human breast cancer. Cancer Cell 33(3):463–479 e10Google Scholar
  23. 23.
    Osterreicher CH et al (2011) Fibroblast-specific protein 1 identifies an inflammatory subpopulation of macrophages in the liver. Proc Natl Acad Sci USA 108(1):308–313Google Scholar
  24. 24.
    Sappino AP et al (1988) Smooth-muscle differentiation in stromal cells of malignant and non-malignant breast tissues. Int J Cancer 41(5):707–712Google Scholar
  25. 25.
    Alarcon-Martinez L et al (2018) Capillary pericytes express alpha-smooth muscle actin, which requires prevention of filamentous-actin depolymerization for detection. Elife.  https://doi.org/10.7554/eLife.34861 Google Scholar
  26. 26.
    Öhlund D et al (2017) Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J Exp Med 214(3):579–596Google Scholar
  27. 27.
    Busch S et al (2017) Cellular organization and molecular differentiation model of breast cancer-associated fibroblasts. Mol Cancer 16(1):73Google Scholar
  28. 28.
    Patel AK et al (2018) A subtype of cancer-associated fibroblasts with lower expression of alpha-smooth muscle actin suppresses stemness through BMP4 in oral carcinoma. Oncogenesis 7(10):78Google Scholar
  29. 29.
    Quante M et al (2011) Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell 19(2):257–272Google Scholar
  30. 30.
    Su S et al (2018) CD10(+)GPR77(+) cancer-associated fibroblasts promote cancer formation and chemoresistance by sustaining cancer stemness. Cell 172(4):841–856 e16Google Scholar
  31. 31.
    Ishii G et al (2003) Bone-marrow-derived myofibroblasts contribute to the cancer-induced stromal reaction. Biochem Biophys Res Commun 309(1):232–240Google Scholar
  32. 32.
    Arina A et al (2016) Tumor-associated fibroblasts predominantly come from local and not circulating precursors. Proc Natl Acad Sci USA 113(27):7551–7556Google Scholar
  33. 33.
    Fujisawa M et al (2018) Ovarian stromal cells as a source of cancer-associated fibroblasts in human epithelial ovarian cancer: a histopathological study. PLoS ONE 13(10):e0205494Google Scholar
  34. 34.
    LeBleu VS et al (2013) Origin and function of myofibroblasts in kidney fibrosis. Nat Med 19(8):1047–1053Google Scholar
  35. 35.
    Kramann R et al (2015) Perivascular Gli1 + progenitors are key contributors to injury-induced organ fibrosis. Cell Stem Cell 16(1):51–66Google Scholar
  36. 36.
    Zeisberg EM et al (2007) Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Cancer Res 67(21):10123–10128Google Scholar
  37. 37.
    Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Investig 119(6):1420–1428Google Scholar
  38. 38.
    Iwano M et al (2002) Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Investig 110(3):341–350Google Scholar
  39. 39.
    Ronnov-Jessen L et al (1995) The origin of the myofibroblasts in breast cancer. Recapitulation of tumor environment in culture unravels diversity and implicates converted fibroblasts and recruited smooth muscle cells. J Clin Investig 95(2):859–873Google Scholar
  40. 40.
    Potenta S, Zeisberg E, Kalluri R (2008) The role of endothelial-to-mesenchymal transition in cancer progression. Br J Cancer 99(9):1375–1379Google Scholar
  41. 41.
    Brabletz T et al (2018) EMT in cancer. Nat Rev Cancer 18(2):128–134Google Scholar
  42. 42.
    Nair N et al (2017) A cancer stem cell model as the point of origin of cancer-associated fibroblasts in tumor microenvironment. Sci Rep 7(1):6838Google Scholar
  43. 43.
    Massague J (2012) TGFbeta signalling in context. Nat Rev Mol Cell Biol 13(10):616–630Google Scholar
  44. 44.
    Ge J et al (2018) RhoA, Rac1, and Cdc42 differentially regulate alphaSMA and collagen I expression in mesenchymal stem cells. J Biol Chem 293(24):9358–9369Google Scholar
  45. 45.
    Beyer C et al (2012) Beta-catenin is a central mediator of pro-fibrotic Wnt signaling in systemic sclerosis. Ann Rheum Dis 71(5):761–767Google Scholar
  46. 46.
    Hamburg EJ, Atit RP (2012) Sustained beta-catenin activity in dermal fibroblasts is sufficient for skin fibrosis. J Investig Dermatol 132(10):2469–2472Google Scholar
  47. 47.
    Sato M (2006) Upregulation of the Wnt/beta-catenin pathway induced by transforming growth factor-beta in hypertrophic scars and keloids. Acta Derm Venereol 86(4):300–307Google Scholar
  48. 48.
    Lei S et al (2004) The murine gastrin promoter is synergistically activated by transforming growth factor-beta/Smad and Wnt signaling pathways. J Biol Chem 279(41):42492–42502Google Scholar
  49. 49.
    Chen JH et al (2011) Beta-catenin mediates mechanically regulated, transforming growth factor-beta1-induced myofibroblast differentiation of aortic valve interstitial cells. Arterioscler Thromb Vasc Biol 31(3):590–597Google Scholar
  50. 50.
    Caraci F et al (2008) TGF-beta1 targets the GSK-3beta/beta-catenin pathway via ERK activation in the transition of human lung fibroblasts into myofibroblasts. Pharmacol Res 57(4):274–282Google Scholar
  51. 51.
    Carthy JM et al (2011) Wnt3a induces myofibroblast differentiation by upregulating TGF-beta signaling through SMAD2 in a beta-catenin-dependent manner. PLoS ONE 6(5):e19809Google Scholar
  52. 52.
    Xu J, Lamouille S, Derynck R (2009) TGF-beta-induced epithelial to mesenchymal transition. Cell Res 19(2):156–172Google Scholar
  53. 53.
    Bonner JC (2004) Regulation of PDGF and its receptors in fibrotic diseases. Cytokine Growth Factor Rev 15(4):255–273Google Scholar
  54. 54.
    Anderberg C et al (2009) Paracrine signaling by platelet-derived growth factor-CC promotes tumor growth by recruitment of cancer-associated fibroblasts. Cancer Res 69(1):369–378Google Scholar
  55. 55.
    Forsberg K et al (1993) Platelet-derived growth factor (PDGF) in oncogenesis: development of a vascular connective tissue stroma in xenotransplanted human melanoma producing PDGF-BB. Proc Natl Acad Sci USA 90(2):393–397Google Scholar
  56. 56.
    Skobe M, Fusenig NE (1998) Tumorigenic conversion of immortal human keratinocytes through stromal cell activation. Proc Natl Acad Sci USA 95(3):1050–1055Google Scholar
  57. 57.
    Herum KM et al (2017) The soft- and hard-heartedness of cardiac fibroblasts: mechanotransduction signaling pathways in fibrosis of the heart. J Clin Med 6(5):53Google Scholar
  58. 58.
    Lee AA et al (1999) Differential responses of adult cardiac fibroblasts to in vitro biaxial strain patterns. J Mol Cell Cardiol 31(10):1833–1843Google Scholar
  59. 59.
    Ao M et al (2015) Stretching fibroblasts remodels fibronectin and alters cancer cell migration. Sci Rep 5:8334Google Scholar
  60. 60.
    Herum KM et al (2017) Mechanical regulation of cardiac fibroblast profibrotic phenotypes. Mol Biol Cell 28(14):1871–1882Google Scholar
  61. 61.
    Boyle ST, Samuel MS (2016) Mechano-reciprocity is maintained between physiological boundaries by tuning signal flux through the Rho-associated protein kinase. Small GTPases 7(3):139–146Google Scholar
  62. 62.
    Calvo F et al (2013) Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat Cell Biol 15(6):637–646Google Scholar
  63. 63.
    Levental KR et al (2009) Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139(5):891–906Google Scholar
  64. 64.
    Paszek MJ et al (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell 8(3):241–254Google Scholar
  65. 65.
    Huang X et al (2012) Matrix stiffness-induced myofibroblast differentiation is mediated by intrinsic mechanotransduction. Am J Respir Cell Mol Biol 47(3):340–348Google Scholar
  66. 66.
    Zhao XH et al (2007) Force activates smooth muscle alpha-actin promoter activity through the Rho signaling pathway. J Cell Sci 120(Pt 10):1801–1809Google Scholar
  67. 67.
    Foster CT, Gualdrini F, Treisman R (2017) Mutual dependence of the MRTF-SRF and YAP-TEAD pathways in cancer-associated fibroblasts is indirect and mediated by cytoskeletal dynamics. Genes Dev 31(23–24):2361–2375Google Scholar
  68. 68.
    Liu F et al (2015) Mechanosignaling through YAP and TAZ drives fibroblast activation and fibrosis. Am J Physiol Lung Cell Mol Physiol 308(4):L344–L357Google Scholar
  69. 69.
    Mannaerts I et al (2015) The Hippo pathway effector YAP controls mouse hepatic stellate cell activation. J Hepatol 63(3):679–688Google Scholar
  70. 70.
    Dupont S et al (2011) Role of YAP/TAZ in mechanotransduction. Nature 474(7350):179–183Google Scholar
  71. 71.
    Dupont S (2016) Role of YAP/TAZ in cell-matrix adhesion-mediated signalling and mechanotransduction. Exp Cell Res 343(1):42–53Google Scholar
  72. 72.
    Meng Z et al (2018) RAP2 mediates mechanoresponses of the Hippo pathway. Nature 560(7720):655–660Google Scholar
  73. 73.
    Zhang K et al (2016) Mechanical signals regulate and activate SNAIL1 protein to control the fibrogenic response of cancer-associated fibroblasts. J Cell Sci 129(10):1989–2002Google Scholar
  74. 74.
    Henderson NC et al (2013) Targeting of alphav integrin identifies a core molecular pathway that regulates fibrosis in several organs. Nat Med 19(12):1617–1624Google Scholar
  75. 75.
    Wipff PJ, Hinz B (2008) Integrins and the activation of latent transforming growth factor beta1—an intimate relationship. Eur J Cell Biol 87(8–9):601–615Google Scholar
  76. 76.
    Wipff PJ et al (2007) Myofibroblast contraction activates latent TGF-beta1 from the extracellular matrix. J Cell Biol 179(6):1311–1323Google Scholar
  77. 77.
    Arora PD, Narani N, McCulloch CA (1999) The compliance of collagen gels regulates transforming growth factor-beta induction of alpha-smooth muscle actin in fibroblasts. Am J Pathol 154(3):871–882Google Scholar
  78. 78.
    Pankova D et al (2016) Cancer-associated fibroblasts induce a collagen cross-link switch in tumor stroma. Mol Cancer Res 14(3):287–295Google Scholar
  79. 79.
    Karnoub AE et al (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449(7162):557–563Google Scholar
  80. 80.
    Seoane J, Gomis RR (2017) TGF-beta family signaling in tumor suppression and cancer progression. Cold Spring Harb Perspect Biol 9(12):a022277Google Scholar
  81. 81.
    Kojima Y et al (2010) Autocrine TGF-beta and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts. Proc Natl Acad Sci USA 107(46):20009–20014Google Scholar
  82. 82.
    Petersen OW et al (2003) Epithelial to mesenchymal transition in human breast cancer can provide a nonmalignant stroma. Am J Pathol 162(2):391–402Google Scholar
  83. 83.
    Hargadon KM (2016) Dysregulation of TGFbeta1 activity in cancer and its influence on the quality of anti-tumor immunity. J Clin Med 5(9):76Google Scholar
  84. 84.
    De Silva DM et al (2017) Targeting the hepatocyte growth factor/Met pathway in cancer. Biochem Soc Trans 45(4):855–870Google Scholar
  85. 85.
    Matsumoto K et al (1994) Hepatocyte growth factor/scatter factor induces tyrosine phosphorylation of focal adhesion kinase (p125FAK) and promotes migration and invasion by oral squamous cell carcinoma cells. J Biol Chem 269(50):31807–31813Google Scholar
  86. 86.
    Lau EY et al (2016) Cancer-associated fibroblasts regulate tumor-initiating cell plasticity in hepatocellular carcinoma through c-Met/FRA1/HEY1 Signaling. Cell Rep 15(6):1175–1189Google Scholar
  87. 87.
    Drebert Z et al (2018) Glucocorticoids indirectly decrease colon cancer cell proliferation and invasion via effects on cancer-associated fibroblasts. Exp Cell Res 362(2):332–342Google Scholar
  88. 88.
    Henriksson ML et al (2011) Colorectal cancer cells activate adjacent fibroblasts resulting in FGF1/FGFR3 signaling and increased invasion. Am J Pathol 178(3):1387–1394Google Scholar
  89. 89.
    Knuchel S et al (2015) Fibroblast surface-associated FGF-2 promotes contact-dependent colorectal cancer cell migration and invasion through FGFR-SRC signaling and integrin alphavbeta5-mediated adhesion. Oncotarget 6(16):14300–14317Google Scholar
  90. 90.
    Sun Y et al (2017) Cancer-associated fibroblasts secrete FGF-1 to promote ovarian proliferation, migration, and invasion through the activation of FGF-1/FGFR4 signaling. Tumour Biol.  https://doi.org/10.1177/1010428317712592 Google Scholar
  91. 91.
    Fukumura D et al (1998) Tumor induction of VEGF promoter activity in stromal cells. Cell 94(6):715–725Google Scholar
  92. 92.
    Bai YP et al (2015) FGF-1/-3/FGFR4 signaling in cancer-associated fibroblasts promotes tumor progression in colon cancer through Erk and MMP-7. Cancer Sci 106(10):1278–1287Google Scholar
  93. 93.
    Crawford Y et al (2009) PDGF-C mediates the angiogenic and tumorigenic properties of fibroblasts associated with tumors refractory to anti-VEGF treatment. Cancer Cell 15(1):21–34Google Scholar
  94. 94.
    Sewell-Loftin MK et al (2017) Cancer-associated fibroblasts support vascular growth through mechanical force. Sci Rep 7(1):12574Google Scholar
  95. 95.
    Peña C et al (2013) STC1 expression by cancer-associated fibroblasts drives metastasis of colorectal cancer. Cancer Res 73(4):1287–1297Google Scholar
  96. 96.
    Sumida T et al (2011) Anti-stromal therapy with imatinib inhibits growth and metastasis of gastric carcinoma in an orthotopic nude mouse model. Int J Cancer 128(9):2050–2062Google Scholar
  97. 97.
    Orimo A et al (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121(3):335–348Google Scholar
  98. 98.
    Jin H et al (2006) A homing mechanism for bone marrow-derived progenitor cell recruitment to the neovasculature. J Clin Investig 116(3):652–662Google Scholar
  99. 99.
    Ao M et al (2007) Cross-talk between paracrine-acting cytokine and chemokine pathways promotes malignancy in benign human prostatic epithelium. Cancer Res 67(9):4244–4253Google Scholar
  100. 100.
    Izumi D et al (2016) CXCL12/CXCR4 activation by cancer-associated fibroblasts promotes integrin beta1 clustering and invasiveness in gastric cancer. Int J Cancer 138(5):1207–1219Google Scholar
  101. 101.
    Feig C et al (2013) Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc Natl Acad Sci USA 110(50):20212–20217Google Scholar
  102. 102.
    Kraman M et al (2010) Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-alpha. Science 330(6005):827–830Google Scholar
  103. 103.
    Allaoui R et al (2016) Cancer-associated fibroblast-secreted CXCL16 attracts monocytes to promote stroma activation in triple-negative breast cancers. Nat Commun 7:13050Google Scholar
  104. 104.
    Augsten M et al (2009) CXCL14 is an autocrine growth factor for fibroblasts and acts as a multi-modal stimulator of prostate tumor growth. Proc Natl Acad Sci USA 106(9):3414–3419Google Scholar
  105. 105.
    Sjöberg E et al (2016) Expression of the chemokine CXCL14 in the tumour stroma is an independent marker of survival in breast cancer. Br J Cancer 114(10):1117–1124Google Scholar
  106. 106.
    Roca H et al (2009) CCL2 and interleukin-6 promote survival of human CD11b + peripheral blood mononuclear cells and induce M2-type macrophage polarization. J Biol Chem 284(49):34342–34354Google Scholar
  107. 107.
    Subramaniam KS et al (2013) Cancer-associated fibroblasts promote proliferation of endometrial cancer cells. PLoS ONE 8(7):e68923Google Scholar
  108. 108.
    Mishra P, Banerjee D, Ben-Baruch A (2011) Chemokines at the crossroads of tumor-fibroblast interactions that promote malignancy. J Leukoc Biol 89(1):31–39Google Scholar
  109. 109.
    Aras S, Zaidi MR (2017) TAMeless traitors: macrophages in cancer progression and metastasis. Br J Cancer 117(11):1583–1591Google Scholar
  110. 110.
    Liao D, Luo Y, Markowitz D, Xiang R, Reisfeld RA (2009) Cancer associated fibroblasts promote tumor growth and metastasis by modulating the tumor immune microenvironment in a 4T1 murine breast cancer model. PLoS ONE 4(11):e7965Google Scholar
  111. 111.
    Zhang F et al (2016) TGF-β induces M2-like macrophage polarization via SNAIL-mediated suppression of a pro-inflammatory phenotype. Oncotarget 7(32):52294–52306Google Scholar
  112. 112.
    Wu X et al (2017) IL-6 secreted by cancer-associated fibroblasts promotes epithelial-mesenchymal transition and metastasis of gastric cancer via JAK2/STAT3 signaling pathway. Oncotarget 8(13):20741–20750Google Scholar
  113. 113.
    Xiong S et al (2018) Cancer-associated fibroblasts promote stem cell-like properties of hepatocellular carcinoma cells through IL-6/STAT3/Notch signaling. Am J Cancer Res 8(2):302–316Google Scholar
  114. 114.
    Qiao Y et al (2018) IL6 derived from cancer-associated fibroblasts promotes chemoresistance via CXCR7 in esophageal squamous cell carcinoma. Oncogene 37(7):873–883Google Scholar
  115. 115.
    Kumar V et al (2017) Cancer-associated fibroblasts neutralize the anti-tumor effect of CSF1 receptor blockade by inducing PMN-MDSC infiltration of tumors. Cancer Cell 32(5):654–668.e5Google Scholar
  116. 116.
    Luga V et al (2012) Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell 151(7):1542–1556Google Scholar
  117. 117.
    Leca J et al (2016) Cancer-associated fibroblast-derived annexin A6+ extracellular vesicles support pancreatic cancer aggressiveness. J Clin Invest 126(11):4140–4156Google Scholar
  118. 118.
    Richards KE et al (2017) Cancer-associated fibroblast exosomes regulate survival and proliferation of pancreatic cancer cells. Oncogene 36(13):1770–1778Google Scholar
  119. 119.
    Donnarumma E et al (2017) Cancer-associated fibroblasts release exosomal microRNAs that dictate an aggressive phenotype in breast cancer. Oncotarget 8(12):19592–19608Google Scholar
  120. 120.
    Itoh G et al (2017) Cancer-associated fibroblasts induce cancer cell apoptosis that regulates invasion mode of tumours. Oncogene 36(31):4434–4444Google Scholar
  121. 121.
    Santi A, Kugeratski FG, Zanivan S (2018) Cancer associated fibroblasts: the architects of stroma remodeling. Proteomics 18(5–6):e1700167Google Scholar
  122. 122.
    Chen Y et al (2015) Lysyl hydroxylase 2 induces a collagen cross-link switch in tumor stroma. J Clin Investig 125(3):1147–1162Google Scholar
  123. 123.
    Barker HE, Cox TR, Erler JT (2012) The rationale for targeting the LOX family in cancer. Nat Rev Cancer 12(8):540–552Google Scholar
  124. 124.
    Butcher DT, Alliston T, Weaver VM (2009) A tense situation: forcing tumour progression. Nat Rev Cancer 9(2):108–122Google Scholar
  125. 125.
    Acerbi I et al (2015) Human breast cancer invasion and aggression correlates with ECM stiffening and immune cell infiltration. Integr Biol (Camb) 7(10):1120–1134Google Scholar
  126. 126.
    Reid SE et al (2017) Tumor matrix stiffness promotes metastatic cancer cell interaction with the endothelium. EMBO J 36(16):2373–2389Google Scholar
  127. 127.
    Navab R et al (2016) Integrin alpha11beta1 regulates cancer stromal stiffness and promotes tumorigenicity and metastasis in non-small cell lung cancer. Oncogene 35(15):1899–1908Google Scholar
  128. 128.
    Hanley CJ et al (2016) A subset of myofibroblastic cancer-associated fibroblasts regulate collagen fiber elongation, which is prognostic in multiple cancers. Oncotarget 7(5):6159–6174Google Scholar
  129. 129.
    Provenzano PP et al (2006) Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med 4(1):38Google Scholar
  130. 130.
    van der Zee JA et al (2012) Tumour basement membrane laminin expression predicts outcome following curative resection of pancreatic head cancer. Br J Cancer 107(7):1153–1158Google Scholar
  131. 131.
    Schliekelman MJ et al (2011) Targets of the tumor suppressor miR-200 in regulation of the epithelial-mesenchymal transition in cancer. Cancer Res 71(24):7670–7682Google Scholar
  132. 132.
    Lowy CM, Oskarsson T (2015) Tenascin C in metastasis: a view from the invasive front. Cell Adhes Migr 9(1–2):112–124Google Scholar
  133. 133.
    Yoshida T, Akatsuka T, Imanaka-Yoshida K (2015) Tenascin-C and integrins in cancer. Cell Adhes Migr 9(1–2):96–104Google Scholar
  134. 134.
    Chiquet-Ehrismann R et al (2014) Tenascins in stem cell niches. Matrix Biol 37:112–123Google Scholar
  135. 135.
    Liu AY, Zheng H, Ouyang G (2014) Periostin, a multifunctional matricellular protein in inflammatory and tumor microenvironments. Matrix Biol 37:150–156Google Scholar
  136. 136.
    Gillan L et al (2002) Periostin secreted by epithelial ovarian carcinoma is a ligand for alpha(V)beta(3) and alpha(V)beta(5) integrins and promotes cell motility. Cancer Res 62(18):5358–5364Google Scholar
  137. 137.
    Kii I et al (2010) Incorporation of tenascin-C into the extracellular matrix by periostin underlies an extracellular meshwork architecture. J Biol Chem 285(3):2028–2039Google Scholar
  138. 138.
    Idolazzi L et al (2017) Periostin: the bone and beyond. Eur J Intern Med 38:12–16Google Scholar
  139. 139.
    Underwood TJ et al (2015) Cancer-associated fibroblasts predict poor outcome and promote periostin-dependent invasion in oesophageal adenocarcinoma. J Pathol 235(3):466–477Google Scholar
  140. 140.
    Glentis A et al (2017) Cancer-associated fibroblasts induce metalloprotease-independent cancer cell invasion of the basement membrane. Nat Commun 8(1):924Google Scholar
  141. 141.
    Gaggioli C et al (2007) Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat Cell Biol 9(12):1392–1400Google Scholar
  142. 142.
    Attieh Y et al (2017) Cancer-associated fibroblasts lead tumor invasion through integrin-beta3-dependent fibronectin assembly. J Cell Biol 216(11):3509–3520Google Scholar
  143. 143.
    Labernadie A et al (2017) A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion. Nat Cell Biol 19(3):224–237Google Scholar
  144. 144.
    Elmusrati AA et al (2017) Cancer-associated fibroblasts promote bone invasion in oral squamous cell carcinoma. Br J Cancer 117(6):867–875Google Scholar
  145. 145.
    McAllister SS, Weinberg RA (2014) The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis. Nat Cell Biol 16(8):717–727Google Scholar
  146. 146.
    Elkabets M et al (2011) Human tumors instigate granulin-expressing hematopoietic cells that promote malignancy by activating stromal fibroblasts in mice. J Clin Investig 121(2):784–799Google Scholar
  147. 147.
    Bruzzese F et al (2014) Local and systemic protumorigenic effects of cancer-associated fibroblast-derived GDF15. Cancer Res 74(13):3408–3417Google Scholar
  148. 148.
    Kaplan RN et al (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438(7069):820–827Google Scholar
  149. 149.
    Hiratsuka S et al (2006) Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat Cell Biol 8(12):1369–1375Google Scholar
  150. 150.
    Hoshino A et al (2015) Tumour exosome integrins determine organotropic metastasis. Nature 527(7578):329–335Google Scholar
  151. 151.
    Malanchi I et al (2011) Interactions between cancer stem cells and their niche govern metastatic colonization. Nature 481(7379):85–89Google Scholar
  152. 152.
    Wang Z et al (2016) Periostin promotes immunosuppressive premetastatic niche formation to facilitate breast tumour metastasis. J Pathol 239(4):484–495Google Scholar
  153. 153.
    Cox TR et al (2013) LOX-mediated collagen crosslinking is responsible for fibrosis-enhanced metastasis. Cancer Res 73(6):1721–1732Google Scholar
  154. 154.
    Hansen MT et al (2015) A link between inflammation and metastasis: serum amyloid A1 and A3 induce metastasis, and are targets of metastasis-inducing S100A4. Oncogene 34(4):424–435Google Scholar
  155. 155.
    Umakoshi M et al (2018) Macrophage-mediated transfer of cancer-derived components to stromal cells contributes to establishment of a pro-tumor microenvironment. Oncogene.  https://doi.org/10.1038/s41388-018-0564-x Google Scholar
  156. 156.
    Straussman R et al (2012) Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature 487(7408):500–504Google Scholar
  157. 157.
    Hirata E et al (2015) Intravital imaging reveals how BRAF inhibition generates drug-tolerant microenvironments with high integrin beta1/FAK signaling. Cancer Cell 27(4):574–588Google Scholar
  158. 158.
    Jayson GC et al (2016) Antiangiogenic therapy in oncology: current status and future directions. Lancet 388(10043):518–529Google Scholar
  159. 159.
    Ribas A, Wolchok JD (2018) Cancer immunotherapy using checkpoint blockade. Science 359(6382):1350–1355Google Scholar
  160. 160.
    Wei SC, Duffy CR, Allison JP (2018) Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov 8(9):1069–1086Google Scholar
  161. 161.
    Brahmer JR et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366(26):2455–2465Google Scholar
  162. 162.
    Royal RE et al (2010) Phase 2 trial of single agent Ipilimumab (anti-CTLA-4) for locally advanced or metastatic pancreatic adenocarcinoma. J Immunother 33(8):828–833Google Scholar
  163. 163.
    Liu H, Shen J, Lu K (2017) IL-6 and PD-L1 blockade combination inhibits hepatocellular carcinoma cancer development in mouse model. Biochem Biophys Res Commun 486(2):239–244Google Scholar
  164. 164.
    Park BV et al (2016) TGFbeta1-mediated SMAD3 enhances PD-1 expression on antigen-specific T cells in cancer. Cancer Discov 6(12):1366–1381Google Scholar
  165. 165.
    Principe DR et al (2018) TGFbeta blockade augments PD-1 inhibition to promote T-cell mediated regression of pancreatic cancer. Mol Cancer Ther.  https://doi.org/10.1158/1535-7163.MCT-18-0850 Google Scholar
  166. 166.
    Mariathasan S et al (2018) TGFbeta attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554(7693):544–548Google Scholar
  167. 167.
    Tauriello DVF et al (2018) TGFbeta drives immune evasion in genetically reconstituted colon cancer metastasis. Nature 554(7693):538–543Google Scholar
  168. 168.
    Acharyya S et al (2012) A CXCL1 paracrine network links cancer chemoresistance and metastasis. Cell 150(1):165–178Google Scholar
  169. 169.
    Ozdemir BC et al (2014) Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell 25(6):719–734Google Scholar
  170. 170.
    Rhim AD et al (2014) Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell 25(6):735–747Google Scholar
  171. 171.
    Hirrlinger J et al (2009) Split-cre complementation indicates coincident activity of different genes in vivo. PLoS ONE 4(1):e4286Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.BRIC, University of CopenhagenCopenhagenDenmark

Personalised recommendations