Advertisement

Hepatic arterial infusion of irinotecan and EmboCept® S results in high tumor concentration of SN-38 in a rat model of colorectal liver metastases

  • Anne KauffelsEmail author
  • Marie Kitzmüller
  • Andrea Gruber
  • Hannah Nowack
  • Hanibal Bohnenberger
  • Melanie Spitzner
  • Anja Kuthning
  • Thilo Sprenger
  • Martin Czejka
  • Michael Ghadimi
  • Jens Sperling
Research Paper
  • 29 Downloads

Abstract

Intraarterial chemotherapy for colorectal liver metastases (CRLM) can be applied alone or together with embolization particles. It remains unclear whether different types of embolization particles lead to higher intratumoral drug concentration. Herein, we quantified the concentrations of CPT-11 and its active metabolite SN-38 in plasma, liver and tumor tissue after hepatic arterial infusion (HAI) of irinotecan, with or without further application of embolization particles, in a rat model of CRLM. Animals underwent either systemic application of irinotecan, or HAI with or without the embolization particles Embocept® S and Tandem™. Four hours after treatment concentrations of CPT-11 and SN-38 were analyzed in plasma, tumor and liver samples by high-performance liquid chromatography. Additionally, DNA-damage and apoptosis were analyzed immunohistochemically. Tumor tissue concentrations of SN-38 were significantly increased after HAI with irinotecan and EmboCept® S compared to the other groups. The number of apoptotic cells was significantly higher after both HAI with irinotecan and EmboCept® S or Tandem™ loaded with irinotecan compared to the control group. HAI with irinotecan and EmboCept® S resulted in an increased SN-38 tumor concentration. Both HAI with irinotecan and EmboCept® S or Tandem™ loaded with irinotecan were highly effective with regard to apoptosis.

Keywords

Hepatic arterial infusion Irinotecan SN38 

Notes

Acknowledgements

The authors thank Birgit Jünemann who helped to establish the immunohistochemistry staining.

Funding

A Kauffels salary during the time of the study and part of the study itself has beend funded by the Else Kröner-Fresenius-Stiftung (EKFS), Bad Homburg v.d.H, Germany, due to a scholarship. The cost for HPLC-analyses in Vienna has been covered by PharmaCept GmbH, Berlin, Germany.

Compliance with Ethical Standards

Conflict of interest

A Kuthning works for PharmaCept GmbH, Berlin. All other authors declare no potential conflict of interest.

Ethics approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution at which the studies were conducted (Niedersächsisches Landesamt für Verbraucherschutz und Lebensmittelsicherheit, ethics approval number 14/1610).

Supplementary material

10585_2019_9954_MOESM1_ESM.png (120 kb)
Supplementary Fig. 1 CPT-11 concentrations of plasma (A), liver (B) and tumor tissue (C) 4 h or 24 h after treatment of animals undergoing systemic administration of irinotecan alone (preliminary experiment). Mean ± SEM (PNG 120 KB)
10585_2019_9954_MOESM2_ESM.png (122 kb)
Supplementary Fig. 2 SN-38 concentrations of plasma (A), liver (B) and tumor tissue (C) 4 h or 24 h after treatment of animals undergoing systemic administration of irinotecan alone (preliminary experiment). Mean ± SEM (PNG 121 KB)

References

  1. 1.
    Habib A, Desai K, Hickey R, Thornburg B, Lewandowski R, Salem R (2015) Transarterial approaches to primary and secondary hepatic malignancies. Nat Rev Clin Oncol 12:481–489CrossRefGoogle Scholar
  2. 2.
    Mocellin S, Pilati P, Lise M, Nitti D (2007) Meta-analysis of hepatic arterial infusion for unresectable liver metastases from colorectal cancer: the end of an era? J Clin Oncol 25:5649–5654CrossRefGoogle Scholar
  3. 3.
    McAuliffe JC, Qadan M, D’Angelica MI (2015) Hepatic resection, hepatic arterial infusion pump therapy, and genetic biomarkers in the management of hepatic metastases from colorectal cancer. J Gastrointest Oncol 6:699–708Google Scholar
  4. 4.
    Fiorentini G, Sarti D, Aliberti C, Carandina R, Mambrini A, Guadagni S (2017) Multidisciplinary approach of colorectal cancer liver metastases. World J Clin Oncol 8:190–202CrossRefGoogle Scholar
  5. 5.
    Cercek A, Boucher TM, Gluskin JS, Aguiló A, Chou JF, Connell LC et al (2016) Response rates of hepatic arterial infusion pump therapy in patients with metastatic colorectal cancer liver metastases refractory to all standard chemotherapies. J Surg Oncol 114:655–663CrossRefGoogle Scholar
  6. 6.
    DʼAngelica MI, Correa-Gallego C, Paty PB, Cercek A, Gewirtz AN, Chou JF et al (2015) Phase II trial of hepatic artery infusional and systemic chemotherapy for patients with unresectable hepatic metastases from colorectal cancer: conversion to resection and long-term outcomes. Ann Surg 261:353–360CrossRefGoogle Scholar
  7. 7.
    Martin RC III, Scoggins CR, Schreeder M, Rilling WS, Laing CJ, Tatum CM et al (2015) Randomized controlled trial of irinotecan drug-eluting beads with simultaneous FOLFOX and bevacizumab for patients with unresectable colorectal liver-limited metastasis. Cancer 121:3649–3658CrossRefGoogle Scholar
  8. 8.
    Groot Koerkamp B, Sadot E, Kemeny NE, Gönen M, Leal JN, Allen PJ et al (2017) Perioperative hepatic arterial infusion pump chemotherapy is associated with longer survival after resection of colorectal liver metastases: a propensity score analysis. J Clin Oncol 35:1938–1944CrossRefGoogle Scholar
  9. 9.
    Gruber-Rouh T, Marko C, Thalhammer A, Nour-Eldin NE, Langenbach M, Beeres M et al (2016) Current strategies in interventional oncology of colorectal liver metastases. Br J Radiol 26:20151060CrossRefGoogle Scholar
  10. 10.
    Fujita K, Kubota Y, Ishida H, Sasaki Y (2015) Irinotecan, a key chemotherapeutic drug for metastatic colorectal cancer. World J Gastroenterol 21:12234–12248CrossRefGoogle Scholar
  11. 11.
    Mathijssen RH, van Alphen RJ, Verweij J, Loos WJ, Nooter K, Stoter G, Sparreboom A (2001) Clinical pharmacokinetics and metabolism of irinotecan (CPT-11). Clin Cancer Res 7:2182–2194Google Scholar
  12. 12.
    Xie R, Mathijssen RH, Sparreboom A, Verweij J, Karlsson MO (2002) Clinical pharmacokinetics of irinotecan and its metabolites in relation with diarrhea. Clin Pharmacol Ther 72:265–275CrossRefGoogle Scholar
  13. 13.
    Colucci G, Gebbia V, Paoletti G, Giuliani F, Caruso M, Gebbia N et al (2005) Phase III randomized trial of FOLFIRI versus FOLFOX4 in the treatment of advanced colorectal cancer: a multicenter study of the Gruppo Oncologico Dell’Italia Meridionale. J Clin Oncol 23:4866–4875CrossRefGoogle Scholar
  14. 14.
    Benedict FG (1934) Die Oberflächenbestimmungen verschiedener Tiergattungen [Determination of body surface area in different animal species]. Ergeb Physiol Exp Pharmakol 36:300–346CrossRefGoogle Scholar
  15. 15.
    Workman P, Aboagye EO, Balkwill F, Balmain A, Bruder G, Chaplin DJ et al (2010) Guidelines for the welfare and use of animals in cancer research. Br J Cancer 102:1555–1577CrossRefGoogle Scholar
  16. 16.
    Institute of Laboratory Animal Resources, National Research Council (1996) Guide for the care and use of laboratory animals, 8th edn. NIH Guide, UKGoogle Scholar
  17. 17.
    Sperling J, Schäfer T, Ziemann C, Benz-Weiber A, Kollmar O, Schilling MK et al (2012) Hepatic arterial infusion of bevacizumab in combination with oxaliplatin reduces tumor growth in a rat model of colorectal liver metastases. Clin Exp Metastasis 29:91–99CrossRefGoogle Scholar
  18. 18.
    Sperling J, Brandhorst D, Schäfer T, Ziemann C, Benz-Weißer A, Scheuer C et al (2013) Liver-directed chemotherapy of cetuximab and bevacizumab in combination with oxaliplatin is more effective to inhibit tumor growth of CC531 colorectal rat liver metastases than systemic chemotherapy. Clin Exp Metastasis 30:447–455CrossRefGoogle Scholar
  19. 19.
    Sperling J, Schäfer T, Benz-Weißer A, Ziemann C, Scheuer C, Kollmar O et al (2013) Hepatic arterial infusion but not systemic application of cetuximab in combination with oxaliplatin significantly reduces growth of CC531 colorectal rat liver metastases. Int J Colorectal Dis 28:555–562CrossRefGoogle Scholar
  20. 20.
    Eder I, Czejka M, Schueller J, Zeleny U (2000) Clinical pharmacokinetics (PHK) and metabolism of irinotecan (IRINO) during mono- and polychemotherapy with 5-Fluorouracil/Leucovorin (5FU/LV) and Docetaxel (DOCE). Eur J Pharm Sci 11:23Google Scholar
  21. 21.
    Slatter JG, Schaaf LJ, Sams JP, Feenstra KL, Johnson MG, Bombardt PA et al (2000) Pharmacokinetics, metabolism, and excretion of irinotecan (CPT-11) following I.V. infusion of [(14)C]CPT-11 in cancer patients. Drug Metab Dispos 28:423–433Google Scholar
  22. 22.
    Czejka M, Kiss A, Koessner C, Terkola R, Ettlinger D, Schueller J (2011) Metabolic activation of irinotecan during intra-arterial chemotherapy of metastatic colorectal cancer. Anticancer Res 31:3573–3578Google Scholar
  23. 23.
    Basu S, Zeng M, Yin T, Gao S, Hu M (2016) Development and validation of an UPLC-MS/MS method for the quantification of irinotecan, SN-38 and SN-38 glucuronide in plasma, urine, feces, liver and kidney: application to a pharmacokinetic study of irinotecan in rats. J Chromatogr B Analyt Technol Biomed Life Sci 1015–1016:34–41CrossRefGoogle Scholar
  24. 24.
    Tanaka T, Nishiofuku H, Hukuoka Y, Sato T, Masada T, Takano M et al (2014) Pharmacokinetics and antitumor efficacy of chemoembolization using 40 µm irinotecan-loaded microspheres in a rabbit liver tumor model. J Vasc Interv Radiol 25:1037–1044CrossRefGoogle Scholar
  25. 25.
    Gnutzmann DM, Mechel J, Schmitz A, Köhler K, Krone D, Bellemann N et al (2015) Evaluation of the plasmatic and parenchymal elution kinetics of two different irinotecan-loaded drug-eluting embolics in a pig model. J Vasc Interv Radiol 26:746–754CrossRefGoogle Scholar
  26. 26.
    Baker DG, Kearney MT (2015) The need for econometric research in laboratory animal operations. Lab Anim (NY) 44:217–220CrossRefGoogle Scholar
  27. 27.
    Thomas C, Nijenhuis AM, Timens W, Kuppen PJ, Daemen T, Scherphof GL (1993) Liver metastasis model of colon cancer in the rat: immunohistochemical characterization. Invasion Metastasis 13:102–112Google Scholar
  28. 28.
    White SB, Procissi D, Chen J, Gogineni VR, Tyler P, Yang Y et al (2016) Characterization of CC-531 as a rat model of colorectal liver metastases. PLoS ONE 11:e0155334CrossRefGoogle Scholar
  29. 29.
    Eyol E, Boleij A, Taylor RR, Lewis AL, Berger MR (2008) Chemoembolisation of rat colorectal liver metastases with drug eluting beads loaded with irinotecan or doxorubicin. Clin Exp Metastasis 25:273–282CrossRefGoogle Scholar
  30. 30.
    van Duijnhoven FH, Tollenaar RA, Terpstra OT, Kuppen PJ (2005) Locoregional therapies of liver metastases in a rat CC531 coloncarcinoma model results in increased resistance to tumour rechallenge. Clin Exp Metastasis 22:247–253CrossRefGoogle Scholar
  31. 31.
    Seelig MH, Leible M, Sänger J, Berger MR (2004) Chemoembolization of rat liver metastasis with microspheres and gemcitabine followed by evaluation of tumor cell load by chemiluminescence. Oncol Rep 11:1107–1113Google Scholar
  32. 32.
    Hutteman M, Mieog JS, van der Vorst JR, Dijkstra J, Kuppen PJ, van der Laan AM et al (2011) Intraoperative near-infrared fluorescence imaging of colorectal metastases targeting integrin α(v)β(3) expression in a syngeneic rat model. Eur J Surg Oncol 37:252–257CrossRefGoogle Scholar
  33. 33.
    Krause P, Flikweert H, Monin M, Seif Amir Hosseini A, Helms G, Cantanhede G et al (2013) Increased growth of colorectal liver metastasis following partial hepatectomy. Clin Exp Metastasis 30:681–693CrossRefGoogle Scholar
  34. 34.
    Sperling J, Ziemann C, Gittler A, Benz-Weißer A, Menger MD, Kollmar O (2015) Tumour growth of colorectal rat liver metastases is inhibited by hepatic arterial infusion of the mTOR-inhibitor temsirolimus after portal branch ligation. Clin Exp Metastasis 32:313–321CrossRefGoogle Scholar
  35. 35.
    Vollmar B, Menger MD (2009) The hepatic microcirculation: mechanistic contributions and therapeutic targets in liver injury and repair. Physiol Rev 98:1269–1339CrossRefGoogle Scholar
  36. 36.
    Oda M, Yokomori H, Han JY (2003) Regulatory mechanisms of hepatic microcirculation. Clin Hemorheol Microcirc 29:167–182Google Scholar
  37. 37.
    Koo A, Liang IY, Cheng KK (1975) The terminal hepatic microcirculation in the rat. Q J Exp Physiol Cogn Med Sci 60:261–266Google Scholar
  38. 38.
    Gonda T, Ishida H, Yoshinaga K, Sugihara K (2000) Microvasculature of small liver metastases in rats. J Surg Res 94:43–48CrossRefGoogle Scholar
  39. 39.
    Buck A, Halbritter S, Späth C, Feuchtinger A, Aichler M, Zitzelsberger H et al (2015) Distribution and quantification of irinotecan and its active metabolite SN-38 in colon cancer murine model systems using MALDI MSI. Anal Bioanal Chem 407:2107–2116CrossRefGoogle Scholar
  40. 40.
    Martignoni M, Groothuis GM, de Kanter R (2006) Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction. Expert Opin Drug Metab Toxicol 2:875–894CrossRefGoogle Scholar
  41. 41.
    Chabot GG (1997) Clinical pharmacokinetics of irinotecan. Clin Pharmacokinet 33:245–259CrossRefGoogle Scholar
  42. 42.
  43. 43.
    Pieper CC, Meyer C, Vollmar B, Hauenstein K, Schild HH, Wilhelm KE (2015) Temporary arterial embolization of liver parenchyma with degradable starch microspheres (EmboCept® S) in a swine model. Cardiovasc Intervent Radiol 38:435–441CrossRefGoogle Scholar
  44. 44.
    Bhutiani N, Akinwande O, Martin RC III (2016) Efficacy and toxicity of hepatic intra-arterial drug-eluting (irinotecan) bead (DEBIRI) therapy in irinotecan-refractory unresectable colorectal liver metastases. World J Surg 40:1178–1190CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Anne Kauffels
    • 1
    Email author
  • Marie Kitzmüller
    • 2
  • Andrea Gruber
    • 2
  • Hannah Nowack
    • 1
  • Hanibal Bohnenberger
    • 3
  • Melanie Spitzner
    • 1
  • Anja Kuthning
    • 4
  • Thilo Sprenger
    • 1
  • Martin Czejka
    • 2
    • 5
  • Michael Ghadimi
    • 1
  • Jens Sperling
    • 1
  1. 1.Department of General, Visceral and Pediatric SurgeryUniversity Medical Center GoettingenGöttingenGermany
  2. 2.Division of Clinical Pharmacy and DiagnosticsUniversity of ViennaViennaAustria
  3. 3.Institute of PathologyUniversity Medical Center GoettingenGöttingenGermany
  4. 4.PharmaCept GmbHBerlinGermany
  5. 5.Austrian Society of Applied PharmacokineticsViennaAustria

Personalised recommendations