Advertisement

Clinical & Experimental Metastasis

, Volume 35, Issue 8, pp 715–725 | Cite as

Transparent reporting of experimental parameters in assays measuring phenotypic steps in metastasis

  • Robin Boiy
  • Jonas Steenbrugge
  • Jan Van Deun
  • An Hendrix
  • Evelyne Meyer
  • Olivier De WeverEmail author
Technical Note

Abstract

Metastasis is key to cancer mortality. Understanding its biology is vital for developing strategies to prevent and treat metastasis. Phenotypic assays to either study metastasis or evaluate anti-metastatic drugs are widely used in preclinical research. This technical note discusses the adherence of reporting essential experimental and methodological parameters in chemotactic invasion assays in vitro and spontaneous metastasis assays in vivo. Following the analysis of 130 recent (< 5 years) research papers, several shortcomings in reporting were identified. Therefore, we strongly argue to increase experimental rigor which should result in a significant improvement with respect to reproducibility of preclinical metastasis research.

Keywords

Reproducibility Chemotactic invasion Methodological rigor Spontaneous metastasis assay Benchmarking Minimal information guidelines 

Notes

Acknowledgements

This research was supported by Research Council of Ghent University (BOF) and Grants from “Kom op tegen Kanker”, “Stichting tegen Kanker”, and Fund for Scientific Research-Flanders.

References

  1. 1.
    Fitzmaurice C, Allen C, Barber RM et al (2017) Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: a systematic analysis for the global burden of disease study global burden of disease cancer collaboration. JAMA Oncol 3:524–548.  https://doi.org/10.1001/jamaoncol.2016.5688 CrossRefPubMedGoogle Scholar
  2. 2.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674.  https://doi.org/10.1016/j.cell.2011.02.013 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cancer Immunol Immunother 100:57–70.  https://doi.org/10.1007/s00262-010-0968-0 CrossRefGoogle Scholar
  4. 4.
    Richardson MM, Jennings LK, Zhang XA (2011) Tetraspanins and tumor progression. Clin Exp Metastasis 28:261–270.  https://doi.org/10.1007/s10585-010-9365-5 CrossRefPubMedGoogle Scholar
  5. 5.
    Hu M, Polyak K (2008) Molecular characterisation of the tumour microenvironment in breast cancer. Eur J Cancer 44:2760–2765.  https://doi.org/10.1016/j.ejca.2008.09.038 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Nguyen DX, Bos PD, Massagué J (2009) Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 9:274–284.  https://doi.org/10.1038/nrc2622 CrossRefPubMedGoogle Scholar
  7. 7.
    Kramer N, Walzl A, Unger C et al (2013) In vitro cell migration and invasion assays. Mutat Res Rev Mutat Res 752:10–24.  https://doi.org/10.1016/j.mrrev.2012.08.001 CrossRefGoogle Scholar
  8. 8.
    Albini A, Benelli R (2007) The chemoinvasion assay: a method to assess tumor and endothelial cell invasion and its modulation. Nat Protoc 2:504–511.  https://doi.org/10.1038/nprot.2006.466 CrossRefPubMedGoogle Scholar
  9. 9.
    Kleinman HK, Martin GR (2005) Matrigel: basement membrane matrix with biological activity. Semin Cancer Biol 15:378–386.  https://doi.org/10.1016/j.semcancer.2005.05.004 CrossRefPubMedGoogle Scholar
  10. 10.
    Glentis A, Gurchenkov V, Vignjevic DM (2014) Assembly, heterogeneity, and breaching of the basement membranes. Cell Adhes Migr 8:236–245.  https://doi.org/10.4161/cam.28733 CrossRefGoogle Scholar
  11. 11.
    Schoumacher M, Glentis A, Gurchenkov VV, Vignjevic DM (2013) Basement membrane invasion assays: native basement membrane and chemoinvasion assay. Methods Mol Biol 1046:133–144.  https://doi.org/10.1007/978-1-62703-538-5_8 CrossRefPubMedGoogle Scholar
  12. 12.
    Ke N, Wang X, Xu X, Abassi YA (2011) The xCELLigence system for real-time and label-free monitoring of cell viability. Methods Mol Biol 740:33–43.  https://doi.org/10.1007/978-1-61779-108-6_6 CrossRefPubMedGoogle Scholar
  13. 13.
    Bird C, Kirstein S (2009) Real-time, label-free monitoring of cellular invasion and migration with the xCELLigence system. Nat Methods 6:5–6.  https://doi.org/10.1038/nmeth.f.263 CrossRefGoogle Scholar
  14. 14.
    O’Clair L, Syzbut C, Appledorn DM (2017) Visualize chemotaxis in real time. Genet Eng Biotechnol News 37:12–13.  https://doi.org/10.1089/gen.37.07.08 CrossRefGoogle Scholar
  15. 15.
    Limame R, Wouters A, Pauwels B et al (2012) Comparative analysis of dynamic cell viability, migration and invasion assessments by novel real-time technology and classic endpoint assays. PLoS One 7:1–12.  https://doi.org/10.1371/journal.pone.0046536 CrossRefGoogle Scholar
  16. 16.
    Paoloni M, Khanna C (2008) Translation of new cancer treatments from pet dogs to humans. Nat Rev Cancer 8:147–156.  https://doi.org/10.1038/nrc2273 CrossRefPubMedGoogle Scholar
  17. 17.
    Direcks WGE, van Gelder M, Lammertsma AA, Molthoff C (2008) A new rat model of human breast cancer for evaluating efficacy of new anti-cancer agents in vivo. Cancer Biol Ther 7:532–537.  https://doi.org/10.4161/cbt.7.4.5481 CrossRefPubMedGoogle Scholar
  18. 18.
    Jonkers J, Derksen PWB (2007) Modeling metastatic breast cancer in mice. J Mammary Gland Biol Neoplasia 12:191–203.  https://doi.org/10.1007/s10911-007-9050-8 CrossRefPubMedGoogle Scholar
  19. 19.
    Kocatürk B, Versteeg HH (2015) Orthotopic injection of breast cancer cells into the mammary fat pad of mice to study tumor growth. J Vis Exp.  https://doi.org/10.3791/51967 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kittrell F, Valdez K, Elsarraj H, Hong Y, Medina D, Behbod F (2016) Mouse mammary intraductal (MIND) method for transplantation of patient derived primary DCIS cells and cell lines. Bio Protoc 6:e1744CrossRefGoogle Scholar
  21. 21.
    Lodillinsky C, Infante E, Guichard A et al (2016) p63/MT1-MMP axis is required for in situ to invasive transition in basal-like breast cancer. Oncogene 35:344–357.  https://doi.org/10.1038/onc.2015.87 CrossRefPubMedGoogle Scholar
  22. 22.
    Welch DR (1997) Technical considerations for studying cancer metastasis in vivo. Clin Exp Metastasis 15:272–306.  https://doi.org/10.1023/A:1018477516367 CrossRefPubMedGoogle Scholar
  23. 23.
    Tao K, Fang M, Alroy J, Sahagian GG (2008) Imagable 4T1 model for the study of late stage breast cancer. BMC Cancer 8:228.  https://doi.org/10.1186/1471-2407-8-228 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Steenbrugge J, Breyne K, Denies S et al (2016) Comparison of the adipose and luminal mammary gland compartment as orthotopic inoculation sites in a 4T1-based immunocompetent preclinical model for triple-negative breast cancer. J Mammary Gland Biol Neoplasia 21:113–122.  https://doi.org/10.1007/s10911-016-9362-7 CrossRefPubMedGoogle Scholar
  25. 25.
    Lou Y, Preobrazhenska O, Auf Dem Keller U et al (2008) Epithelial–mesenchymal transition (EMT) is not sufficient for spontaneous murine breast cancer metastasis. Dev Dyn 237:2755–2768.  https://doi.org/10.1002/dvdy.21658 CrossRefPubMedGoogle Scholar
  26. 26.
    Lifsted T, Le Voyer T, Williams M, et al (1998) Identification of inbred mouse strains harboring genetic modifiers of mammary tumor age of onset and metastatic progression. Int J Cancer 77:640–644.  https://doi.org/10.1002/(SICI)1097-0215(19980812)77:4%3C640::AID-IJC26%3E3.0.CO;2-8 CrossRefPubMedGoogle Scholar
  27. 27.
    Borowsky AD, Namba R, Young LJT et al (2005) Syngeneic mouse mammary carcinoma cell lines: two closely related cell lines with divergent metastatic behavior. Clin Exp Metastasis 22:47–59.  https://doi.org/10.1007/s10585-005-2908-5 CrossRefPubMedGoogle Scholar
  28. 28.
    Bao L, Cardiff RD, Steinbach P et al (2015) Multipotent luminal mammary cancer stem cells model tumor heterogeneity. Breast Cancer Res 17:137.  https://doi.org/10.1186/s13058-015-0615-y CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Hurez V, Padrón Á, Svatek RS, Curiel TJ (2018) Considerations for successful cancer immunotherapy in aged hosts. Exp Gerontol 107:27–36.  https://doi.org/10.1016/j.exger.2017.10.002 CrossRefPubMedGoogle Scholar
  30. 30.
    Jackaman C, Nelson DJ (2014) Are macrophages, myeloid derived suppressor cells and neutrophils mediators of local suppression in healthy and cancerous tissues in aging hosts? Exp Gerontol 54:53–57.  https://doi.org/10.1016/j.exger.2013.11.009 CrossRefPubMedGoogle Scholar
  31. 31.
    Kaur A, Webster MR, Marchbank K et al (2016) SFRP2 in the aged microenvironment drives melanoma metastasis and therapy resistance. Nature 532:250–254.  https://doi.org/10.1038/nature17392 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Van den Broeck W, Derore A, Simoens P (2006) Anatomy and nomenclature of murine lymph nodes: descriptive study and nomenclatory standardization in BALB/cAnNCrl mice. J Immunol Methods 312:12–19.  https://doi.org/10.1016/j.jim.2006.01.022 CrossRefPubMedGoogle Scholar
  33. 33.
    Speak AO, Swiatkowska A, Karp NA et al (2017) A high-throughput in vivo screening method in the mouse for identifying regulators of metastatic colonization. Nat Protoc 12:2465–2477.  https://doi.org/10.1038/nprot.2017.118 CrossRefPubMedGoogle Scholar
  34. 34.
    Sflomos G, Dormoy V, Metsalu T et al (2016) A preclinical model for ERα-positive breast cancer points to the epithelial microenvironment as determinant of luminal phenotype and hormone response. Cancer Cell 29:407–422.  https://doi.org/10.1016/j.ccell.2016.02.002 CrossRefPubMedGoogle Scholar
  35. 35.
    McDaniel SM, Rumer KK, Biroc SL et al (2006) Remodeling of the mammary microenvironment after lactation promotes breast tumor cell metastasis. Am J Pathol 168:608–620.  https://doi.org/10.2353/ajpath.2006.050677 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Schedin P (2006) Pregnancy-associated breast cancer and metastasis. Nat Rev Cancer 6:281–291.  https://doi.org/10.1038/nrc1839 CrossRefPubMedGoogle Scholar
  37. 37.
    Feys L, Descamps B, Vanhove C et al (2016) Quantitative and functional requirements for bioluminescent cancer models. In Vivo 30:1–11PubMedGoogle Scholar
  38. 38.
    Abt MA, Grek CL, Ghatnekar GS, Yeh ES (2016) Evaluation of lung metastasis in mouse mammary tumor models by quantitative real-time PCR. J Vis Exp.  https://doi.org/10.3791/53329 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Johansen JS, Jensen BV, Roslind A et al (2006) Serum YKL-40, a new prognostic biomarker in cancer patients? Cancer Epidemiol Biomark Prev 15:194–202.  https://doi.org/10.1158/1055-9965.EPI-05-0011 CrossRefGoogle Scholar
  40. 40.
    Bauer M, Eickhoff JC, Gould MN et al (2008) Neutrophil gelatinase-associated lipocalin (NGAL) is a predictor of poor prognosis in human primary breast cancer. Breast Cancer Res Treat 108:389–397.  https://doi.org/10.1007/s10549-007-9619-3 CrossRefPubMedGoogle Scholar
  41. 41.
    Domínguez-Vigil IG, Moreno-Martínez AK, Wang JY et al (2018) The dawn of the liquid biopsy in the fight against cancer. Oncotarget 9:2912–2922.  https://doi.org/10.18632/oncotarget.23131 CrossRefPubMedGoogle Scholar
  42. 42.
    Landis SC, Amara SG, Asadullah K et al (2012) A call for transparent reporting to optimize the predictive value of preclinical research. Nature 490:187–191.  https://doi.org/10.1038/nature11556 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Kilkenny C, Browne WJ, Cuthill IC et al (2013) Improving bioscience research reporting: the arrive guidelines for reporting animal research. Animals 4:35–44.  https://doi.org/10.3390/ani4010035 CrossRefGoogle Scholar
  44. 44.
    Van Deun J, Mestdagh P, Agostinis P et al (2017) EV-TRACK: transparent reporting and centralizing knowledge in extracellular vesicle research. Nat Methods 14(3):228–232.  https://doi.org/10.1038/nmeth.4185 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Robin Boiy
    • 1
    • 3
  • Jonas Steenbrugge
    • 2
    • 3
  • Jan Van Deun
    • 1
    • 3
  • An Hendrix
    • 1
    • 3
  • Evelyne Meyer
    • 2
    • 3
  • Olivier De Wever
    • 1
    • 3
    Email author
  1. 1.Laboratory of Experimental Cancer Research, Department of Human Structure and RepairGhent UniversityGhentBelgium
  2. 2.Laboratory of Biochemistry, Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary MedicineGhent UniversityMerelbekeBelgium
  3. 3.Cancer Research Institute Ghent (CRIG)GhentBelgium

Personalised recommendations