Automated quantitative image analysis for ex vivo metastasis assays reveals differing lung composition requirements for metastasis suppression by KISS1

  • Eric D. Young
  • Kyle Strom
  • Ashley F. Tsue
  • Joseph L. Usset
  • Seth MacPherson
  • John T. McGuire
  • Danny R. Welch
Technical Notes in Metastasis Research

Abstract

Imaging is broadly used in biomedical research, but signal variation complicates automated analysis. Using the Pulmonary Metastasis Assay (PuMA) to study metastatic colonization by the metastasis suppressor KISS1, we cultured GFP-expressing melanoma cells in living mouse lung ex vivo for 3 weeks. Epifluorescence images of cells were used to measure growth, creating large datasets which were time consuming and challenging to quantify manually due to scattering of light from outside the focal plane. To address these challenges, we developed an automated workflow to standardize the measurement of disseminated cancer cell growth by applying statistical quality control to remove unanalyzable images followed and a filtering algorithm to quantify only in-focus cells. Using this tool, we demonstrate that expression of the metastasis suppressor KISS1 does not suppress growth of melanoma cells in the PuMA, in contrast to the robust suppression of lung metastasis observed in vivo. This result may suggest that a factor required for metastasis suppression is present in vivo but absent in the PuMA, or that KISS1 suppresses lung metastasis at a step in the metastatic cascade not tested by the PuMA. Together, these data provide a new tool for quantification of metastasis assays and further insight into the mechanism of KISS1 mediated metastasis suppression in the lung.

Keywords

Metastasis assay Pulmonary metastasis assay PuMA Lung metastasis KISS1 Quantitative fluorescent imaging 

Notes

Acknowledgements

The authors acknowledge Drs. Chand Khanna, DVM, PhD, Michael Lizardo, PhD and Arnulfo Mendoza, DVM for their training in the PuMA. The authors also acknowledge support from the Biostatistics and Informatics Shared Resource of the KU Cancer Center.

Author contributions

Conceived and designed experiments: EDY, KS, DRW. Analyzed data: EDY, AFT, JLU, SM, JTM. Wrote first draft of the manuscript: EDY. Contributed to manuscript writing: EDY, KS, AFT, JLU, DRW. Agree with manuscript results and conclusions: EDY, KS, AFT, JLU, SM, JTM, DRW. Developed the structure and arguments for the paper: EDY, KS, JLU, DRW. Made critical revisions and approved final version of the manuscript: EDY, KS, AFT, JLU, JTM, DRW.

Supplementary material

10585_2018_9882_MOESM1_ESM.docx (11 kb)
Supplementary material 1 (DOCX 11 KB)
10585_2018_9882_MOESM2_ESM.tif (29.6 mb)
Supplementary material 2 (TIF 30350 KB)

References

  1. 1.
    Heller D, Hoppe A, Restrepo S, Gatti L, Tournier AL, Tapon N, Basler K, Mao Y (2016) EpiTools: an open-source image analysis toolkit for quantifying epithelial growth dynamics. Dev Cell 36(1):103–116.  https://doi.org/10.1016/j.devcel.2015.12.012 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Li C, Guo J, Cong R, Pang Y, Wang B (2016) Underwater image enhancement by dehazing with minimum information loss and histogram distribution prior. IEEE Trans Image Process.  https://doi.org/10.1109/TIP.2016.2612882 Google Scholar
  3. 3.
    Henriquez NV, van Overveld PG, Que I, Buijs JT, Bachelier R, Kaijzel EL, Lowik CW, Clezardin P, van der Pluijm G (2007) Advances in optical imaging and novel model systems for cancer metastasis research. Clin Exp Metastasis 24(8):699–705.  https://doi.org/10.1007/s10585-007-9115-5 CrossRefPubMedGoogle Scholar
  4. 4.
    Phillips KG, Baker-Groberg SM, McCarty OJ (2014) Quantitative optical microscopy: measurement of cellular biophysical features with a standard optical microscope. J Vis Exp.  https://doi.org/10.3791/50988 Google Scholar
  5. 5.
    Mendoza A, Hong S-HH, Osborne T, Khan MA, Campbell K, Briggs J, Eleswarapu A, Buquo L, Ren L, Hewitt SM, Dakir EHlH, Dakir E-Hl-H, Garfield S, Walker R, Merlino G, Green JE, Hunter KW, Wakefield LM, Khanna C (2010) Modeling metastasis biology and therapy in real time in the mouse lung. J Clin Investig 120(8):2979–2988.  https://doi.org/10.1172/JCI40252 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Lizardo MM, Sorensen PH (2018) Practical considerations in studying metastatic lung colonization in osteosarcoma using the pulmonary metastasis assay. J Vis Exp.  https://doi.org/10.3791/56332
  7. 7.
    Keyvani A, Kyle S (2013) A fully-automated image processing technique to improve measurement of suspended particles and flocs by removing out-of-focus objects. Comput Geosci 52:189198.  https://doi.org/10.1016/j.cageo.2012.08.018 CrossRefGoogle Scholar
  8. 8.
    Lee JH, Miele ME, Hicks DJ, Phillips KK, Trent JM, Weissman BE, Welch DR (1996) KiSS-1, a novel human malignant melanoma metastasis-suppressor gene. J Natl Cancer Inst 88(23):1731–1737CrossRefPubMedGoogle Scholar
  9. 9.
    Beck BH, Welch DR (2010) The KISS1 metastasis suppressor: a good night kiss for disseminated cancer cells. Eur J Cancer (Oxford England 1990) 46(7):1283–1289.  https://doi.org/10.1016/j.ejca.2010.02.023 CrossRefGoogle Scholar
  10. 10.
    Welch DR, Chen P, Miele ME, McGary CT, Bower JM, Stanbridge EJ, Weissman BE (1993) Microcell-mediated transfer of chromosome 6 into metastatic human C8161 melanoma cells suppresses metastasis but does not inhibit tumorigenicity. Oncogene 9(1):255–262Google Scholar
  11. 11.
    Nash KT, Phadke PA, Navenot J-MM, Hurst DR, Accavitti-Loper MA, Sztul E, Vaidya KS, Frost AR, Kappes JC, Peiper SC, Welch DR (2007) Requirement of KISS1 secretion for multiple organ metastasis suppression and maintenance of tumor dormancy. J Natl Cancer Inst 99(4):309–321.  https://doi.org/10.1093/jnci/djk053 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Goldberg SF, Harms JF, Quon K, Welch DR (1999) Metastasis-suppressed C8161 melanoma cells arrest in lung but fail to proliferate. Clin Exp Metastasis 17(7):601–607CrossRefPubMedGoogle Scholar
  13. 13.
    Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Siritantikorn S, Jintaworn S, Noisakran S, Suputtamongkol Y, Paris DH, Blacksell SD (2012) Application of ImageJ program to the enumeration of Orientia tsutsugamushi organisms cultured in vitro. Trans R Soc Trop Med Hyg 106(10):632–635.  https://doi.org/10.1016/j.trstmh.2012.05.004 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    R Development Core Team (2015) R: a language and environment for statistical computing. R Development Core Team, ViennaGoogle Scholar
  16. 16.
    MATLAB (2015). vol 8.5.0. The MathWorks Inc., NatickGoogle Scholar
  17. 17.
    Goldberg SF, Miele ME, Hatta N, Takata M, Paquette-Straub C, Freedman LP, Welch DR (2003) Melanoma metastasis suppression by chromosome 6: evidence for a pathway regulated by CRSP3 and TXNIP. Cancer Res 63(2):432–440PubMedGoogle Scholar
  18. 18.
    Nash KT, Phadke PA, Navenot JM, Hurst DR, Accavitti-Loper MA, Sztul E, Vaidya KS, Frost AR, Kappes JC, Peiper SC, Welch DR (2007) Requirement of KISS1 secretion for multiple organ metastasis suppression and maintenance of tumor dormancy. J Natl Cancer Inst 99(4):309–321.  https://doi.org/10.1093/jnci/djk053 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kimura H, Hayashi K, Yamauchi K, Yamamoto N, Tsuchiya H, Tomita K, Kishimoto H, Bouvet M, Hoffman RM (2010) Real-time imaging of single cancer-cell dynamics of lung metastasis. J Cell Biochem 109(1):58–64.  https://doi.org/10.1002/jcb.22379 PubMedGoogle Scholar
  20. 20.
    Leong HS, Lizardo MM, Ablack A, McPherson VA, Wandless TJ, Chambers AF, Lewis JD (2012) Imaging the impact of chemically inducible proteins on cellular dynamics in vivo. PLoS ONE 7(1):e30177.  https://doi.org/10.1371/journal.pone.0030177 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Hoffman RM (2001) Visualization of GFP-expressing tumors and metastasis in vivo. Biotechniques 30(5):1016–1022PubMedGoogle Scholar
  22. 22.
    Hedberg-Buenz A, Christopher MA, Lewis CJ, Fernandes KA, Dutca LM, Wang K, Scheetz TE, Abramoff MD, Libby RT, Garvin MK, Anderson MG (2016) Quantitative measurement of retinal ganglion cell populations via histology-based random forest classification. Exp Eye Res 146:370–385.  https://doi.org/10.1016/j.exer.2015.09.011 CrossRefPubMedGoogle Scholar
  23. 23.
    Jones TR, Carpenter AE, Lamprecht MR, Moffat J, Silver SJ, Grenier JK, Castoreno AB, Eggert US, Root DE, Golland P, Sabatini DM (2009) Scoring diverse cellular morphologies in image-based screens with iterative feedback and machine learning. Proc Natl Acad Sci USA 106(6):1826–1831.  https://doi.org/10.1073/pnas.0808843106 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Lambert AW, Pattabiraman DR, Weinberg RA (2017) Emerging Biological Principles of Metastasis. Cell 168(4):670–691.  https://doi.org/10.1016/j.cell.2016.11.037 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Chaffer CL, San Juan BP, Lim E, Weinberg RA (2016) EMT, cell plasticity and metastasis. Cancer Metastasis Rev 35(4):645–654.  https://doi.org/10.1007/s10555-016-9648-7 CrossRefPubMedGoogle Scholar
  26. 26.
    Jerome Friedman TH, Robert Tibshirani (2000) Additive logistic regression: a statistical view of boosting. Ann Stat 28(2):337–407CrossRefGoogle Scholar
  27. 27.
    Angeliki M, Nikolaos P, Peter L, Constantine P, Michael K (2008) The kisspeptin (KiSS-1)/GPR54 system in cancer biology. Cancer Treat Rev 34(8):682–692.  https://doi.org/10.1016/j.ctrv.2008.05.007 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Cancer BiologyUniversity of Kansas Medical CenterKansas CityUSA
  2. 2.Department of Civil and Environmental EngineeringVirginia TechBlacksburgUSA
  3. 3.Department of BiostatisticsUniversity of Kansas Medical CenterKansas CityUSA
  4. 4.40DigitsKansas CityUSA
  5. 5.The University of Kansas Cancer CenterKansas CityUSA

Personalised recommendations