Advertisement

Meeting report: Metastasis Research Society (MRS) 17th Biennial conference and associated Young Investigator Satellite Meeting (YISM) on cancer metastasis

  • Thomas Beadnell
  • Lucia Borriello
  • Jessica Christenson
  • Jaime Fornetti
  • Ian Guldner
  • Ann Hanna
  • Lenka Kyjacova
  • Kristina Marinak-Whately
  • Poliana Cristina de Melo Martins
  • Mirja Rotinen
  • Veronika te Boekhorst
  • Thomas R CoxEmail author
Meeting report

Abstract

The Metastasis Research Society (MRS) 17th Biennial conference on metastasis was held on the 1st to the 5th of August 2018 at Princeton University, NJ, USA. The meeting was held around themes addressing notable aspects of the understanding and treatment of metastasis and metastatic disease covering basic, translational, and clinical research. Importantly, the meeting was largely supported by our patient advocate partners including Susan G. Komen for the Cure, Theresa’s Research Foundation and METAvivor. There were a total of 85 presentations from invited and selected speakers spread across the main congress and presentations from the preceding Young Investigator Satellite Meeting. Presentations are summarized in this report by session topic.

Keywords

Meeting report Cancer metastasis research Patient advocates 

Notes

References

  1. 1.
    Fidler IJ, Kripke ML (1977) Metastasis results from preexisting variant cells within a malignant tumor. Science 197:893–895CrossRefGoogle Scholar
  2. 2.
    Paget S (1889) The distribution of secondary growths in cancer of the breast. Lancet 1:571–573CrossRefGoogle Scholar
  3. 3.
    Schmidt-Kittler O, Ragg T, Daskalakis A, Granzow M, Ahr A et al (2003) From latent disseminated cells to overt metastasis: genetic analysis of systemic breast cancer progression. Proc Natl Acad Sci USA 100:7737–7742.  https://doi.org/10.1073/pnas.1331931100 CrossRefGoogle Scholar
  4. 4.
    Werner-Klein M, Scheitler S, Hoffmann M, Hodak I, Dietz K et al (2018) Genetic alterations driving metastatic colony formation are acquired outside of the primary tumour in melanoma. Nat Commun.  https://doi.org/10.1038/s41467-017-02674-y Google Scholar
  5. 5.
    Linde N, Casanova-Acebes M, Sosa MS, Mortha A, Rahman A et al (2018) Macrophages orchestrate breast cancer early dissemination and metastasis. Nat Commun.  https://doi.org/10.1038/s41467-017-02481-5 Google Scholar
  6. 6.
    Yao H, Price TT, Cantelli G, Ngo B, Warner MJ et al (2018) Leukaemia hijacks a neural mechanism to invade the central nervous system. Nature 560:55–60.  https://doi.org/10.1038/s41586-018-0342-5 CrossRefGoogle Scholar
  7. 7.
    Kundu ST, Grzeskowiak CL, Fradette JJ, Gibson LA, Rodriguez LB et al (2018) TMEM106B drives lung cancer metastasis by inducing TFEB-dependent lysosome synthesis and secretion of cathepsins. Nat Commun 9:2731.  https://doi.org/10.1038/s41467-018-05013-x CrossRefGoogle Scholar
  8. 8.
    Schaer DA, Budhu S, Liu C, Bryson C, Malandro N et al (2013) GITR pathway activation abrogates tumor immune suppression through loss of regulatory T cell lineage stability. Cancer Immunol Res 1:320–331.  https://doi.org/10.1158/2326-6066.CIR-13-0086 CrossRefGoogle Scholar
  9. 9.
    Hirschhorn-Cymerman D, Rizzuto GA, Merghoub T, Cohen AD, Avogadri F et al (2009) OX40 engagement and chemotherapy combination provides potent antitumor immunity with concomitant regulatory T cell apoptosis. J Exp Med 206:1103–1116.  https://doi.org/10.1084/jem.20082205 CrossRefGoogle Scholar
  10. 10.
    Liakou CI, Kamat A, Tang DN, Chen H, Sun J et al (2008) CTLA-4 blockade increases IFNgamma-producing CD4+ ICOShi cells to shift the ratio of effector to regulatory T cells in cancer patients. Proc Natl Acad Sci USA 105:14987–14992.  https://doi.org/10.1073/pnas.0806075105 CrossRefGoogle Scholar
  11. 11.
    Chen H, Fu T, Suh W-K, Tsavachidou D, Wen S et al (2014) CD4 T cells require ICOS-mediated PI3K signaling to increase T-Bet expression in the setting of anti-CTLA-4 therapy. Cancer Immunol Res 2:167–176.  https://doi.org/10.1158/2326-6066.CIR-13-0155 CrossRefGoogle Scholar
  12. 12.
    Fan X, Quezada SA, Sepulveda MA, Sharma P, Allison JP (2014) Engagement of the ICOS pathway markedly enhances efficacy of CTLA-4 blockade in cancer immunotherapy. J Exp Med 211:715–725.  https://doi.org/10.1084/jem.20130590 CrossRefGoogle Scholar
  13. 13.
    Goswami S, Apostolou I, Zhang J, Skepner J, Anandhan S et al (2018) Modulation of EZH2 expression in T cells improves efficacy of anti-CTLA-4 therapy. J Clin Investig.  https://doi.org/10.1172/JCI99760 Google Scholar
  14. 14.
    Juric D, Castel P, Griffith M, Griffith OL, Won HH et al (2015) Convergent loss of PTEN leads to clinical resistance to a PI(3)Kα inhibitor. Nature 518:240–244.  https://doi.org/10.1038/nature13948 CrossRefGoogle Scholar
  15. 15.
    Rotinen M, You S, Yang J, Coetzee SG, Reis-Sobreiro M et al (2018) ONECUT2 is a targetable master regulator of lethal prostate cancer that suppresses the androgen axis. Nat Med 24:1887–1898.  https://doi.org/10.1038/s41591-018-0241-1 CrossRefGoogle Scholar
  16. 16.
    Gril B, Paranjape AN, Woditschka S, Hua E, Dolan EL et al (2018) Reactive astrocytic S1P3 signaling modulates the blood-tumor barrier in brain metastases. Nat Commun.  https://doi.org/10.1038/s41467-018-05030-w Google Scholar
  17. 17.
    Kaur A, Webster MR, Marchbank K, Behera R, Ndoye A et al (2016) sFRP2 in the aged microenvironment drives melanoma metastasis and therapy resistance. Nature 532:250–254.  https://doi.org/10.1038/nature17392 CrossRefGoogle Scholar
  18. 18.
    Kaur A, Ecker BL, Douglass SM, Kugel CH, Webster MR et al (2018) Remodeling of the collagen matrix in aging skin promotes melanoma metastasis and affects immune cell motility. Cancer Discov.  https://doi.org/10.1158/2159-8290.CD-18-0193 Google Scholar
  19. 19.
    Beacham DA, Cukierman E (2005) Stromagenesis: the changing face of fibroblastic microenvironments during tumor progression. Semin Cancer Biol 15:329–341.  https://doi.org/10.1016/j.semcancer.2005.05.003 CrossRefGoogle Scholar
  20. 20.
    Malik R, Luong T, Cao X, Han B, Shah N et al (2018) Rigidity controls human desmoplastic matrix anisotropy to enable pancreatic cancer cell spread via extracellular signal-regulated kinase 2. Matrix Biol.  https://doi.org/10.1016/j.matbio.2018.11.001 Google Scholar
  21. 21.
    Franco-Barraza J, Beacham DA, Amatangelo MD, Cukierman E (2016) Preparation of extracellular matrices produced by cultured and primary fibroblasts. Curr Protoc Cell Biol.  https://doi.org/10.1002/0471143030.cb1009s33 Google Scholar
  22. 22.
    Dasgupta S, Rajapakshe K, Zhu B, Nikolai BC, Yi P et al (2018) Metabolic enzyme PFKFB4 activates transcriptional coactivator SRC-3 to drive breast cancer. Nature 556:249–254.  https://doi.org/10.1038/s41586-018-0018-1 CrossRefGoogle Scholar
  23. 23.
    Krebs AM, Mitschke J, Lasierra Losada M, Schmalhofer O, Boerries M et al (2017) The EMT-activator Zeb1 is a key factor for cell plasticity and promotes metastasis in pancreatic cancer. Nat Cell Biol 19:518–529.  https://doi.org/10.1038/ncb3513 CrossRefGoogle Scholar
  24. 24.
    Morel A-P, Ginestier C, Pommier RM, Cabaud O, Ruiz E et al (2017) A stemness-related ZEB1-MSRB3 axis governs cellular pliancy and breast cancer genome stability. Nat Med 23:568–578.  https://doi.org/10.1038/nm.4323 CrossRefGoogle Scholar
  25. 25.
    Follain G, Osmani N, Azevedo AS, Allio G, Mercier L et al (2018) Hemodynamic forces tune the arrest, adhesion, and extravasation of circulating tumor cells. Dev Cell 45:33–52.e12.  https://doi.org/10.1016/j.devcel.2018.02.015 CrossRefGoogle Scholar
  26. 26.
    Warren SC, Nobis M, Magenau A, Mohammed YH, Herrmann D et al (2018) Removing physiological motion from intravital and clinical functional imaging data. Elife.  https://doi.org/10.7554/eLife.35800 Google Scholar
  27. 27.
    Conway JRW, Warren SC, Herrmann D, Murphy KJ, Cazet AS et al (2018) Intravital imaging to monitor therapeutic response in moving hypoxic regions resistant to PI3K pathway targeting in pancreatic cancer. Cell Rep 23:3312–3326.  https://doi.org/10.1016/j.celrep.2018.05.038 CrossRefGoogle Scholar
  28. 28.
    Vennin C, Cox TR, Pajic M, Timpson P (2017) Transient targeting of the pancreatic cancer stroma as a “fine-tuned” anti-tumor and anti-metastatic therapy. Oncotarget 8:84635–84636.  https://doi.org/10.18632/oncotarget.21468 CrossRefGoogle Scholar
  29. 29.
    Vennin C, Murphy KJ, Morton JP, Cox TR, Pajic M et al (2018) Reshaping the tumor stroma for treatment of pancreatic cancer. Gastroenterology 154:820–838.  https://doi.org/10.1053/j.gastro.2017.11.280 CrossRefGoogle Scholar
  30. 30.
    Vennin C, Chin VT, Warren SC, Lucas MC, Herrmann D et al (2017) Transient tissue priming via ROCK inhibition uncouples pancreatic cancer progression, sensitivity to chemotherapy, and metastasis. Sci Transl Med.  https://doi.org/10.1126/scitranslmed.aai8504 Google Scholar
  31. 31.
    Wyckoff JB, Wang Y, Lin EY, Li J, Goswami S et al (2007) Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res 67:2649–2656.  https://doi.org/10.1158/0008-5472.CAN-06-1823 CrossRefGoogle Scholar
  32. 32.
    Harney AS, Karagiannis GS, Pignatelli J, Smith BD, Kadioglu E et al (2017) The selective tie2 inhibitor rebastinib blocks recruitment and function of tie2hi macrophages in breast cancer and pancreatic neuroendocrine tumors. Mol Cancer Ther 16:2486–2501.  https://doi.org/10.1158/1535-7163.MCT-17-0241 CrossRefGoogle Scholar
  33. 33.
    Bruno A, Bassani B, D’Urso DG, Pitaku I, Cassinotti E et al (2018) Angiogenin and the MMP9-TIMP2 axis are up-regulated in proangiogenic, decidual NK-like cells from patients with colorectal cancer. FASEB J 32:5365–5377.  https://doi.org/10.1096/fj.201701103R CrossRefGoogle Scholar
  34. 34.
    Smith HA, Kang Y (2017) Determinants of organotropic metastasis. Annu Rev Cancer Biol 1:403–423.  https://doi.org/10.1146/annurev-cancerbio-041916-064715 CrossRefGoogle Scholar
  35. 35.
    Peinado H, Zhang H, Matei IR, Costa-Silva B, Hoshino A et al (2017) Pre-metastatic niches: organ-specific homes for metastases. Nat Rev Cancer 17:302–317.  https://doi.org/10.1038/nrc.2017.6 CrossRefGoogle Scholar
  36. 36.
    Zhang H, Freitas D, Kim HS, Fabijanic K, Li Z et al (2018) Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat Cell Biol 20:332–343.  https://doi.org/10.1038/s41556-018-0040-4 CrossRefGoogle Scholar
  37. 37.
    Nabet BY, Qiu Y, Shabason JE, Wu TJ, Yoon T et al (2017) Exosome RNA unshielding couples stromal activation to pattern recognition receptor signaling in cancer. Cell 170:352–366.e13.  https://doi.org/10.1016/j.cell.2017.06.031 CrossRefGoogle Scholar
  38. 38.
    Zhuang X, Zhang H, Li X, Li X, Cong M et al (2017) Differential effects on lung and bone metastasis of breast cancer by Wnt signalling inhibitor DKK1. Nat Cell Biol 19:1274–1285.  https://doi.org/10.1038/ncb3613 CrossRefGoogle Scholar
  39. 39.
    Filipe EC, Chitty JL, Cox TR (2018) Charting the unexplored extracellular matrix in cancer. Int J Exp Pathol 99:58–76.  https://doi.org/10.1111/iep.12269 CrossRefGoogle Scholar
  40. 40.
    Cox TR, Erler JT (2014) Molecular pathways: connecting fibrosis and solid tumor metastasis. Clin Cancer Res 20:3637–3643.  https://doi.org/10.1158/1078-0432.CCR-13-1059 CrossRefGoogle Scholar
  41. 41.
    Cox TR, Erler JT (2011) Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis Model Mech 4:165–178.  https://doi.org/10.1242/dmm.004077 CrossRefGoogle Scholar
  42. 42.
    Mayorca-Guiliani AE, Madsen CD, Cox TR, Horton ER, Venning FA et al (2017) ISDoT: in situ decellularization of tissues for high-resolution imaging and proteomic analysis of native extracellular matrix. Nat Med 23:890–898.  https://doi.org/10.1038/nm.4352 CrossRefGoogle Scholar
  43. 43.
    Meirson T, Genna A, Lukic N, Makhnii T, Alter J et al (2018) Targeting invadopodia-mediated breast cancer metastasis by using ABL kinase inhibitors. Oncotarget 9:22158–22183.  https://doi.org/10.18632/oncotarget.25243 CrossRefGoogle Scholar
  44. 44.
    Meirson T, Gil-Henn H (2018) Targeting invadopodia for blocking breast cancer metastasis. Drug Resist Updates 39:1–17.  https://doi.org/10.1016/j.drup.2018.05.002 CrossRefGoogle Scholar
  45. 45.
    Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y et al (2004) Neutrophil extracellular traps kill bacteria. Science 303:1532–1535.  https://doi.org/10.1126/science.1092385 CrossRefGoogle Scholar
  46. 46.
    Guo JY, Chen H-Y, Mathew R, Fan J, Strohecker AM et al (2011) Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev 25:460–470.  https://doi.org/10.1101/gad.2016311 CrossRefGoogle Scholar
  47. 47.
    White E, Mehnert JM, Chan CS (2015) Autophagy, metabolism, and cancer. Clin Cancer Res 21:5037–5046.  https://doi.org/10.1158/1078-0432.CCR-15-0490 CrossRefGoogle Scholar
  48. 48.
    Yu C, Wang H, Muscarella A, Goldstein A, Zeng H-C et al (2016) Intra-iliac artery injection for efficient and selective modeling of microscopic bone metastasis. J Vis Exp.  https://doi.org/10.3791/53982 Google Scholar
  49. 49.
    Wang H, Yu C, Gao X, Welte T, Muscarella AM et al (2015) The osteogenic niche promotes early-stage bone colonization of disseminated breast cancer cells. Cancer Cell 27:193–210.  https://doi.org/10.1016/j.ccell.2014.11.017 CrossRefGoogle Scholar
  50. 50.
    Wang H, Tian L, Goldstein A, Liu J, Lo H-C et al (2017) Bone-in-culture array as a platform to model early-stage bone metastases and discover anti-metastasis therapies. Nat Commun.  https://doi.org/10.1038/ncomms15045 Google Scholar
  51. 51.
    Porrello A, Leslie PL, Harrison EB, Gorentla BK, Kattula S et al (2018) Factor XIIIA-expressing inflammatory monocytes promote lung squamous cancer through fibrin cross-linking. Nat Commun.  https://doi.org/10.1038/s41467-018-04355-w Google Scholar
  52. 52.
    Sartorius CA, Hanna CT, Gril B, Cruz H, Serkova NJ et al (2016) Estrogen promotes the brain metastatic colonization of triple negative breast cancer cells via an astrocyte-mediated paracrine mechanism. Oncogene 35:2881–2892.  https://doi.org/10.1038/onc.2015.353 CrossRefGoogle Scholar
  53. 53.
    Ando Y, Ta HP, Yen DP, Lee S-S, Raola S et al (2017) A microdevice platform recapitulating hypoxic tumor microenvironments. Sci Rep.  https://doi.org/10.1038/s41598-017-15583-3 Google Scholar
  54. 54.
    Turner TH, Alzubi MA, Sohal SS, Olex AL, Dozmorov MG et al (2018) Characterizing the efficacy of cancer therapeutics in patient-derived xenograft models of metastatic breast cancer. Breast Cancer Res Treat 170:221–234.  https://doi.org/10.1007/s10549-018-4748-4 CrossRefGoogle Scholar
  55. 55.
    Hastings JF, Skhinas JN, Fey D, Croucher DR, Cox TR (2018) The extracellular matrix as a key regulator of intracellular signalling networks. Br J Pharmacol.  https://doi.org/10.1111/bph.14195 Google Scholar
  56. 56.
    Choi S, Chen Z, Tang LH, Fang Y, Shin SJ et al (2016) Bcl-xL promotes metastasis independent of its anti-apoptotic activity. Nat Commun 7:10384.  https://doi.org/10.1038/ncomms10384 CrossRefGoogle Scholar
  57. 57.
    Naxerova K, Reiter JG, Brachtel E, Lennerz JK, van de Wetering M et al (2017) Origins of lymphatic and distant metastases in human colorectal cancer. Science 357:55–60.  https://doi.org/10.1126/science.aai8515 CrossRefGoogle Scholar
  58. 58.
    Naxerova K, Jain RK (2015) Using tumour phylogenetics to identify the roots of metastasis in humans. Nat Rev Clin Oncol 12:258–272.  https://doi.org/10.1038/nrclinonc.2014.238 CrossRefGoogle Scholar
  59. 59.
    Turajlic S, Xu H, Litchfield K, Rowan A, Chambers T et al (2018) Tracking cancer evolution reveals constrained routes to metastases: TRACERx Renal. Cell 173:581–594.  https://doi.org/10.1016/j.cell.2018.03.057 CrossRefGoogle Scholar
  60. 60.
    Ulrich H, Ratajczak MZ, Schneider G, Adinolfi E, Orioli E et al (2018) Kinin and purine signaling contributes to neuroblastoma metastasis. Front Pharmacol.  https://doi.org/10.3389/fphar.2018.00500 Google Scholar
  61. 61.
    Borsig L, Wong R, Hynes RO, Varki NM, Varki A (2002) Synergistic effects of L- and P-selectin in facilitating tumor metastasis can involve non-mucin ligands and implicate leukocytes as enhancers of metastasis. Proc Natl Acad Sci USA 99:2193–2198.  https://doi.org/10.1073/pnas.261704098 CrossRefGoogle Scholar
  62. 62.
    Läubli H, Borsig L (2010) Selectins promote tumor metastasis. Semin Cancer Biol 20:169–177.  https://doi.org/10.1016/j.semcancer.2010.04.005 CrossRefGoogle Scholar
  63. 63.
    Borsig L (2018) Selectins in cancer immunity. Glycobiology 28:648–655.  https://doi.org/10.1093/glycob/cwx105 CrossRefGoogle Scholar
  64. 64.
    Naba A, Clauser KR, Hoersch S, Liu H, Carr SA et al (2012) The matrisome: in silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Mol Cell Proteomics.  https://doi.org/10.1074/mcp.M111.014647 Google Scholar
  65. 65.
    Naba A, Clauser KR, Ding H, Whittaker CA, Carr SA et al (2016) The extracellular matrix: tools and insights for the “omics” era. Matrix Biol 49:10–24.  https://doi.org/10.1016/j.matbio.2015.06.003 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Thomas Beadnell
    • 1
  • Lucia Borriello
    • 2
    • 3
  • Jessica Christenson
    • 4
  • Jaime Fornetti
    • 5
  • Ian Guldner
    • 6
  • Ann Hanna
    • 7
  • Lenka Kyjacova
    • 8
  • Kristina Marinak-Whately
    • 9
  • Poliana Cristina de Melo Martins
    • 10
  • Mirja Rotinen
    • 11
  • Veronika te Boekhorst
    • 12
    • 13
  • Thomas R Cox
    • 14
    • 15
    Email author
  1. 1.Department of Cancer BiologyThe Kansas University Medical Center, and The University of Kansas Cancer CenterKansas CityUSA
  2. 2.Department of Anatomy and Structural BiologyAlbert Einstein College of Medicine, Montefiore Medical CenterBronxUSA
  3. 3.Gruss-Lipper Biophotonics CenterAlbert Einstein College of Medicine, Montefiore Medical CenterBronxUSA
  4. 4.Department of PathologyUniversity of Colorado Anschutz Medical CampusAuroraUSA
  5. 5.Department of Oncological Sciences, Huntsman Cancer InstituteUniversity of UtahSalt Lake CityUSA
  6. 6.Department of Biological Sciences, College of ScienceUniversity of Notre DameNotre DameUSA
  7. 7.Department of PathologyUniversity of Alabama at BirminghamBirminghamUSA
  8. 8.European Center for Angioscience (ECAS), Medical Faculty MannheimUniversity of HeidelbergMannheimGermany
  9. 9.WVU Cancer Institute, Cancer Cell BiologyWest Virginia School of MedicineMorgantownUSA
  10. 10.Department of Biochemistry, Institute of ChemistryUniversity of Sao PauloSao PauloBrazil
  11. 11.Division of Cancer Biology and Therapeutics, Departments of Surgery & Biomedical SciencesCedars-Sinai Medical CenterLos AngelesUSA
  12. 12.David H. Koch Center for Applied Research of Genitourinary CancersThe University of Texas MD Anderson Cancer CenterHoustonUSA
  13. 13.Department of Cell BiologyRadboud University Medical CentreNijmegenThe Netherlands
  14. 14.Cancer DivisionGarvan Institute of Medical Research & The Kinghorn Cancer CentreSydneyAustralia
  15. 15.Faculty of Medicine, St Vincent’s Clinical SchoolUNSW SydneySydneyAustralia

Personalised recommendations