Advertisement

Clinical & Experimental Metastasis

, Volume 34, Issue 5, pp 333–344 | Cite as

Expression of ezrin and moesin in primary breast carcinoma and matched lymph node metastases

  • M. BartovaEmail author
  • J. Hlavaty
  • Y. Tan
  • C. Singer
  • K. Pohlodek
  • J. Luha
  • I. Walter
Research Paper

Abstract

Ezrin, radixin, moesin (ERM) are important membrane-cytoskeletal crosslinkers and are suggested to play important role in cancer progression and metastasis. Even though ERM proteins were generally considered to be functionally redundant and the most studied was ezrin, recent studies highlight their distinct roles in metastatic process. Little information is available regarding the role of individual ERM proteins and their phosphorylated forms in human breast cancer. Our study is the first to examine expression of ezrin, moesin and their phosphorylated forms in primary breast tumors and matched lymph node metastases (LNMs) and their correlation with clinicopathological variables. A total of 88 primary breast cancer, 91 LNMs, 54 intraductal carcinoma and 26 normal adjacent breast tissue samples from tissue microarrays were studied. Expression was determined by immunohistochemistry, the intensity and number of positive cells was scored. Statistical analysis of protein expression and patients’ age, tumor grade and hormonal status was performed. No statistical significant difference was found in ezrin, moesin, p-ezrinTyr353 and pan-p-ezrinThr567/radixinThr564/moesinThr558 expression between primary tumors and LNMs. Even though it was not significant, moesin expression varied between primary tumors, intraductal carcinoma, normal breast adjacent tissue and LNMs. A significant positive correlation between moesin and tumor grade has been proven. Even though primary tumors and matched LNMs did not show different expression patterns, moesin correlated significantly with higher tumor grade. Its positivity in intraductal carcinoma and normal breast tissue adjacent to cancer might indicate its role in tumor intiation/progression.

Keywords

Ezrin Moesin Phosphorylation Breast cancer metastasis 

Notes

Acknowledgements

The authors thank C. Höchsmann and A. Flemming for their excellent technical support in histology and immunohistochemistry as well as S. Weingartshofer and D. Muhr for material support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10585_2017_9853_MOESM1_ESM.docx (22 kb)
Supplementary material 1 (DOCX 21 KB)

References

  1. 1.
    Arpin A, Chirivino D, Naba A, Zwaenepoel I (2011) Emerging role for ERM proteins in cell adhesion and migration. Cell Adh Migr 5:199–206CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Fehon R, McClatchey AI, Bretscher A (2010) Organizing the cell cortex: the role of ERM proteins. Nat Rev Mol Cell Biol 11:276–287CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Bretscher A, Edwards K, Fehon RG (2002) ERM proteins and merlin: integrators at the cell cortex. Nat Rev Mol Cell Biol 3:586–599CrossRefPubMedGoogle Scholar
  4. 4.
    Lan M, Kojima T, Murata M, Osanai M, Takano K, Chiba H, Sawada N (2006) Phosphorylation of ezrin enhances microvillus length via a p38 MAPkinase pathway in an immortalized mouse hepatic cell line. Exp Cell Res 312:111–120CrossRefPubMedGoogle Scholar
  5. 5.
    Pujuguet P, Del Maestro L, Gautreau A, Louvard D, Arpin M (2003) Ezrin regulates E-cadherin-dependent adherens junction assembly through Rac1 activation. Mol Biol Cell 14:2181–2191CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Takeuchi K, Sato N, Kasahara H, Funayama N, Nagafuchi A, Yonemura S, Tsukita Sh, Tsukita Sa (1994) Perturbation of cell adhesion and microvilli formation by antisense oligonucleotides to ERM family members. J Cell Biol 125:1371–1384CrossRefPubMedGoogle Scholar
  7. 7.
    Hanzel D, Reggio H, Bretscher A, Forte JG, Mangeat P (1991) The secretion-stimulated 80 K phosphoprotein of parietal cells is ezrin, and has properties of membrane cytoskeletal linker in the induced apical microvilli. Eur Mol Biol Organ 10:2363–2373Google Scholar
  8. 8.
    Kondo T, Takeuchi K, Doi Y, Yonemura S, Nagata S, Tsukita Sh, Tsukita Sa (1997) ERM (ezrin/radixin/moesin)-based molecular mechanism of microvillar breakdown at an early stage of apoptosis. J Cell Biol 139:749–758CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Bruce B, Khanna G, Ren L, Landberg G, Jirström K, Powell C, Borczuk A, Keller ET, Wojno KJ, Meltzer P, Baird K, McClatchey A, Bretscher A, Hewitt SM, Khanna C (2007) Expression of the cytoskeleton linker protein ezrin in human cancers. Clin Exp Metastasis 24:69–78CrossRefPubMedGoogle Scholar
  10. 10.
    Bonaccorsi L, Carloni V, Muratori M, Formigli L, Zecchi S, Forti G, Baldi E (2004) EGF receptor (EGFR) signaling promoting invasion is disrupted in androgen-sensitive prostate cancer cells by an interaction between EGFR and androgen receptor (AR). Int J Cancer 112:78–86CrossRefPubMedGoogle Scholar
  11. 11.
    Ridley AJ (2001) Rho GTPases and cell migration. J Cell Sci 114:2713–2722PubMedGoogle Scholar
  12. 12.
    Clucas J, Valderrama F (2014) ERM proteins in cancer progression. J Cell Sci 127:267–275CrossRefPubMedGoogle Scholar
  13. 13.
    Haynes J, Srivastava J, Madson N, Wittmann T, Barber DL (2011) Dynamic actin remodeling during epithelial-mesenchymal transition depends on increased moesin expression. Mol Biol Cell 22:4750–4764CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Berryman M, Gary R, Bretscher A (1995) Ezrin oligomers are major cytoskeletal components of placental microvilli: a proposal for their involvement in cortical morphogenesis. J Cell Biol 131:1231–1242CrossRefPubMedGoogle Scholar
  15. 15.
    Bretscher A, Gary R, Berryman M (1995) Soluble ezrin purified from placenta exists as stable monomers and elongated dimers with masked C-terminal ezrin-radixin-moesin association domains. BioChemistry 34:16830–16837CrossRefPubMedGoogle Scholar
  16. 16.
    Gary R, Bretscher A (1995) Ezrin self-association involves binding of an N-terminal domain to a normally masked C-terminal domain that includes the F-actin binding site. Mol Biol Cell 6:1061–1075CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Hirao M, Sato N, Kondo T, Yonemura S, Monden M, Sasaki T, Takai Y, Tsukita Sh, Tsukita Sa (1996) Regulation mechanism of ERM protein/plasma membrane association: possible involvement of phosphatidylinositol turnover and rho-dependent signaling pathway. J Cell Biol 135:37–52CrossRefPubMedGoogle Scholar
  18. 18.
    Matsui T, Maeda M, Doi Y, Yonemura S, Amano M, Kaibuchi K, Tsukita Sa, Tsukita Sh (1998) Rho-kinase phosphorylates COOH-terminal threonines of ezrin/radixin/moesin (ERM) proteins and regulates their head-to-tail association. J Cell Biol 140:647–657CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Gautreau A, Poullet P, Louvard D, arpin M (1999) Ezrin, a plasma membrane-microfilament linker, signals cell survival through the phosphatidylinositol 3-kinase/Akt pathway. Proc Natl Acad Sci USA 96:7300–7305CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Mak H, Naba A, Varma S, Schick C, Day A, SenGupta SK, Arpin M, Elliott BE (2012) Ezrin phosphorylation on tyrosine 477 regulates invasion and metastasis of breast cancer cells. BMC Cancer 12:82CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Krieg J, Hunter T (1992) Identification of the two major epidermal growth factor-induced tyrosinephosphorylation sites in the microvillar core protein ezrin. J Biol Chem 267:19258–19265PubMedGoogle Scholar
  22. 22.
    Crepaldi T, Gautreau A, Comoglio PM, Louvard D, Arpin M (1997) Ezrin is an effector of hepatocyte growth factor-mediated migration and morphogenesis in epithelial cells. J Cell Biol 138:423–434CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Chen J, Cohn JA, Mandel LJ (2007) Dephosphorylation of ezrin as an early event in renal microvillar breakdown and anoxic injury. Proc Natl Acad Sci USA 92:7495–7499CrossRefGoogle Scholar
  24. 24.
    Suzuki M, Tarin D (2007) Gene expression profiling of human lymph node metastases and matched primary breast carcinomas: clinical implications. Mol Oncol 1:172–180CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Thongwatchara P, Promwikorn W, Srisomsap C, Chokchaichamnankit D, Boonyaphiphat P, Thongsuksai P (2011) Differential protein expression in primary breast cancer and matched axillary node metastasis. Oncol Rep 26:185–191PubMedGoogle Scholar
  26. 26.
    Estecha A, Sánchez-Martin A, Puig-Kröger A, Bartolomé RA, Teixidó J, Samaniego R, Sánchez-Mateos P (2009) Moesin orchestrates cortical polarity of melanoma tumour cells to initiate 3D invasion. J Cell Sci 122:3492–3501CrossRefPubMedGoogle Scholar
  27. 27.
    Edge SB, Compton CC (2010) The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol 17(6):1471–1474CrossRefPubMedGoogle Scholar
  28. 28.
    Li Q, Wu M, Wang H, Xu G, Zhu T, Zhang Y, Liu P, Song A, Gang C, Han Z, Zhou J, Meng L, Lu Y, Wang S, Ma D (2008) Ezrin silencing by small hairpin RNA reverses metastatic behaviors of human breast cancer cells. Cancer Lett 261(1):55–63CrossRefPubMedGoogle Scholar
  29. 29.
    Pokharel D, Padula MP, Lu JF, Tacchi JL, Luk F, Djordjevic SP, Bebawy M (2014) Proteome analysis of multidrug-resistant, breast cancer-derived microparticles. J Extracell Vesicles 3:24384. doi: 10.3402/jev.v3.24384 CrossRefGoogle Scholar
  30. 30.
    Ghaffari A, Hoskin V, Szeto A, Hum M, Liaghati N, Nakatsu K, LeBrun D, Madarnas Y, Sengupta S, Elliott BE (2014) A novel role for ezrin in breast cancer angio/lymphangiogenesis. Breast Cancer Res 16(5):438–452CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Hlavaty J, Wolfesberger B, Hauck M, Obermayer-Pietsch B, Fuchs-Baumgartinger A, Miller I, Walter I (2016) Ezrin and moesin expression in canine and feline osteosarcoma. Histol Histopathol 11848. doi: 10.14670/HH-11-848 PubMedGoogle Scholar
  32. 32.
    Halon A, Donizy P, Surowiak P, Matkowski R (2013) ERM/Rho protein expression in ductal breast cancer: a 15 year follow-up. Cell Oncol 36:181–190CrossRefGoogle Scholar
  33. 33.
    Wang CCI, Liau JY, Lu YS, Chen JW, Yao YT, Lien HC (2012) Differential expression of moesin in breast cancers and its implication in epithelial-mesenchymal transition. Histopathology 61(1):78–87CrossRefPubMedGoogle Scholar
  34. 34.
    Sarrio D, Rodriguez-Pinilla SM, Dotor A, Calero F, Hardisson D, Palacios J (2006) Abnormal ezrin localization is associated with clinicopathological features in invasive breast carcinomas. Breast Cancer Res Treat 98:71–79CrossRefPubMedGoogle Scholar
  35. 35.
    Kobayashi H, Sagara J, Kurita H, Morifuji M, Ohishi M, Kurashina K, Taniguchi S (2004) Clinical significance of cellular distribution of moesin in patients with oral squamous cell carcinoma. Clin Cancer Res 10:572–580CrossRefPubMedGoogle Scholar
  36. 36.
    Sun B, Zhang S, Zhang D, Li Y, Zhao X, Luo Y, Guo Y (2008) Identification of metastasis-related proteins and their clinical relevance to triple-negative human breast cancer. Clin Cancer Res 14(21):7050–7059CrossRefPubMedGoogle Scholar
  37. 37.
    Xie JJ, Zhang FR, Tao LH. Lü Z, Xu XE, Jian-Shen, Xu LY, Li EM (2011) Expression of ezrin in human embryonic, fetal, and normal adult tissues. J Histochem Cytochem 59:1001–1008CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Fisher ER, Costantino J, Fisher B, Redmond C (1993) Pathologic findings from the national surgical adjuvant breast project (Protocol 4). Discriminants for 15-year survival. National surgical adjuvant breast and bowel project investigators. Cancer 71:2141CrossRefPubMedGoogle Scholar
  39. 39.
    Yu Z, Sun M, Jin F, Xiao Q, He M, Wu H, Ren J, Zhao L, Zhao H, Yao W, Shan F, Cao Y, Wei M (2015) Combined expression of ezrin and Ecadherin is associated with lymph node metastasis and poor prognosis in breast cancer. Oncol Rep 34(1):165–174PubMedGoogle Scholar
  40. 40.
    Arslan AA, Silvera D, Arju R, Giashuddin S, Belitskaya-Levy I, Formenti SC, Schneider RJ (2012) Atypical ezrin localization as a marker of locally advanced breast cancer. Breast Cancer Res Treat 134(3):981–988CrossRefPubMedGoogle Scholar
  41. 41.
    Gschwantler-Kaulich D, Natter C, Steurer S, Walter I, Thomas A, Salama M, Singer ChF (2013) Increase in ezrin expression from benign to malignant breast tumours. Cell Oncol 36:485–491CrossRefGoogle Scholar
  42. 42.
    Hugo H, Ackland ML, Blick T, Lawrence MG, Clements JA, Williams ED, Thompson EW (2007) Epithelial—mesenchymal transitions in carcinoma progression. J Cell Physiol 213:374–383CrossRefPubMedGoogle Scholar
  43. 43.
    Beaty BT, Wang Y, Bravo-Cordero JJ, Sharma VP, Miskolci V, Hodgson L, Condeelis J (2014) Talin regulates moesin-NHE-1 recruitment to invadopodia and promotes mammary tumor metastasis. J Cell Biol 205(5):737–751CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Wang X, Liu M, Zhao CY (2014) Expression of ezrin and moesin related to invasion, metastasis and prognosis of laryngeal squamous cell carcinoma. Genet Mol Res 13(3):8002–8013CrossRefPubMedGoogle Scholar
  45. 45.
    Cui Y, Wu J, Zong M, Song G, Jia Q, Jiang J, Han J (2009) Proteomic profiling in pancreatic cancer with and without lymph node metastasis. Int J Cancer 124(7):1614–1621CrossRefPubMedGoogle Scholar
  46. 46.
    Huber MA, Kraut N, Beug H (2005) Molecular requirements for epithelial-mesenchymal transition during tumour progression. Curr Opin Cell Biol 17:548–558CrossRefPubMedGoogle Scholar
  47. 47.
    Thiery JP, Sleeman JP (2006) Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 7:131–142CrossRefPubMedGoogle Scholar
  48. 48.
    Fehon RG, McClatchey AI, Bretscher A (2010) Organizing the cell cortex: the role of ERM proteins. Nat Rev Mol Cell Biol 11:276–287CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Trujillo KA, Heaphy CM, Mai M, Vargas KM, Jones AC, Vo P, Butler KS, Joste NE, Bisoffi M, Griffith JK (2011) Markers of fibrosis and epithelial to mesenchymal transition demonstrate field cancerization in histologically normal tissue adjacent to breast tumors. Int J Cancer 129:1310–1321CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Heaphy CM, Griffith JK, Bisoffi M (2009) Mammary field cancerization: molecular evidence and clinical importance. Breast Cancer Res Treat 118:229–239CrossRefPubMedGoogle Scholar
  51. 51.
    Heaphy CM, Bisoffi M, Fordyce CA, Haaland CM, Hines WC, Joste NE, Griffith JK (2006) Telomere DNA content and allelic imbalance demonstrate field cancerization in histologically normal tissue adjacent to breast tumors. Int J Cancer 119:108–116CrossRefPubMedGoogle Scholar
  52. 52.
    Barcellos-Hoff MH (2001) It takes a tissue to make a tumor: epigenetics, cancer and the microenvironment. J Mammary Gland Biol Neoplasia 6:213–221CrossRefPubMedGoogle Scholar
  53. 53.
    Ponuwei GA (2016) A glimpse of the ERM proteins. J Biomed Sci 23:35–41CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Jin T, Jin J, Li X, Zhang S, Choi YH, Piao Y, Shen X, Lin Z (2014) Prognostic implications of ezrin and phosphorylated ezrin expression in non-small cell lung cancer. BMC Cancer 14:191CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Cristofano CD, Leopizzi M, Miraglia A, sardella B, Moretti V, Ferrara A, Petrozza V, Della Rocca C (2010) Phosphorylated ezrin is located in the nucleus of the osteosarcoma cell. Mod Pathol 23:1012–1020CrossRefPubMedGoogle Scholar
  56. 56.
    Kaul SC, Kawai R, nomura H, Mitsui HY, Reddel RR, Wadhwa R (1999) Identification of a 55-kDa ezrin-related protein that induces cytoskeletal changes and localizes to the nucleolus. Exp Cell Res 250:51–61CrossRefPubMedGoogle Scholar
  57. 57.
    Cui Y, Li T, Zhang D, Han J (2010) Expression of Ezrin and phosphorylated Ezrin (pEzrin) in pancreatic ductal adenocarcinoma. Cancer Investig 28(3):242–247CrossRefGoogle Scholar
  58. 58.
    Krieg J, Hunter T (1992) Identification of the two major epidermal growth factor-induced tyrosine phosphorylation sites in the microvillar core protein ezrin. J Biol Chem 267(27):19258–19265PubMedGoogle Scholar
  59. 59.
    Gandy KA, Canals D, Adada M, Wada M, Roddy P, Snider AJ, Hannun YA, Obeid LM (2013) Sphingosine-1-phosphate induces filopodia formation through S1PR2 activation of ERM proteins. Biochem J 449:661–672CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Baumgartner M, Sillman AL, Blackwood EM, Srivastava J, Madson N, Schilling JW, Wright JH, Barber DL (2006) The Nck-interacting kinase phosphorylates ERM proteins for formation of lamellipodium by growth factors. Proc Natl Acad Sci USA 103(36):13391–13396CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Hardy KM, Booth BW, Hendrix MJ, Salomon DS, Strizzi L (2010) ErbB/EGF signaling and EMT in mammary development and breast cancer. J Mammary Gland Biol Neoplasia 15(2):191–199CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.2nd Department of Obstetrics and GynecologyUniversity Hospital BratislavaBratislavaSlovakia
  2. 2.Department of Pathobiology, Institute of Anatomy, Histology and EmbryologyUniversity of Veterinary MedicineViennaAustria
  3. 3.Department of Obstetrics and Gynecology, Comprehensive Cancer CenterMedical University of ViennaViennaAustria
  4. 4.QIMR Berghofer Medical Research InstituteHerstonAustralia
  5. 5.Division of General Gynecology and Gynecological Oncology, Department of Obstetrics and GynecologyMedical University of ViennaViennaAustria
  6. 6.Faculty of Medicine, Institute of Medical Biology, Genetics and Clinical GeneticsComenius University BratislavaBratislavaSlovakia

Personalised recommendations