Advertisement

Clinical & Experimental Metastasis

, Volume 34, Issue 3–4, pp 203–213 | Cite as

Meeting report: Metastasis Research Society–Chinese Tumor Metastasis Society joint conference on metastasis

  • Katherine BankaitisEmail author
  • Lucia Borriello
  • Thomas Cox
  • Conor Lynch
  • Andries Zijlstra
  • Barbara Fingleton
  • Miodrag Gužvić
  • Robin Anderson
  • Josh Neman
Research Paper

Abstract

During September 16th–20th 2016, metastasis experts from around the world convened for the 16th Biennial Congress of the Metastasis Research Society and 12th National Congress of the Chinese Tumor Metastasis Society in Chengdu, China to share most current data covering basic, translational, and clinical metastasis research. Presentations of the more than 40 invited speakers of the main congress and presentations from the associated Young Investigator Satellite Meeting are summarized in this report by session topic. The congress program also included three concurrent short talk sessions, an advocacy forum with Chinese and American metastatic patient advocates, a ‘Meet the Professors Roundtable’ session for young investigators, and a ‘Meet the Editors’ session with editors from Cancer Cell and Nature Cell Biology. The goal of integrating expertise and exchanging the latest findings, ideas, and practices in cancer metastasis research was achieved magnificently, thanks to the excellent contributions of many leaders in the field.

Keywords

Meeting report Metastasis Advocates 

Notes

Compliance with ethical standards

Conflict of interest

The authors have no conflicts of interest to declare.

References

  1. 1.
    World Health Organization (2016) Fact sheet on cancer. World Health Organization. http://www.who.int/cancer/en/. Accessed 02 Nov 2016
  2. 2.
    Malladi S, Macalinao DG, Jin X, He L, Basnet H, Zou Y et al (2016) Metastatic latency and immune evasion through autocrine inhibition of WNT. Cell 165:45–60CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Valiente M, Obenauf AC, Jin X, Chen Q, X.H.-F. Zhang, Lee DJ et al (2014) Serpins promote cancer cell survival and vascular co-option in brain metastasis. Cell 156:1002–1016CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Chen Q, Boire A, Jin X, Valiente M, Er EE, Lopez-Soto A et al (2016) Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature 533:493–498CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Nieto MA, R.Y.-J. Huang, Jackson RA, Thiery JP, EMT: 2016. Cell 166(1):21–45Google Scholar
  6. 6.
    Ferrer-Vaquer A, Viotti M, Hadjantonakis A-K (2010) Transitions between epithelial and mesenchymal states and the morphogenesis of the early mouse embryo. Cell Adhes Migr 4:447–457CrossRefGoogle Scholar
  7. 7.
    Meacham CE, Morrison SJ (2013) Tumour heterogeneity and cancer cell plasticity. Nature 501:328–337CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Marjanovic ND, Weinberg RA, Chaffer CL (2013) Cell plasticity and heterogeneity in cancer. Clin Chem 59:168–179CrossRefPubMedGoogle Scholar
  9. 9.
    Akalay I, Janji B, Hasmim M, Noman MZ, Thiery JP, Mami-Chouaib F et al (2013) EMT impairs breast carcinoma cell susceptibility to CTL-mediated lysis through autophagy induction. Autophagy 9:1104–1106CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Wei SC, Fattet L, Tsai JH, Guo Y, Pai VH, Majeski HE et al (2015) Matrix stiffness drives epithelial-mesenchymal transition and tumour metastasis through a TWIST1-G3BP2 mechanotransduction pathway. Nat Cell Biol 17:678–688CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Yu Y, Wu J, Wang Y, Zhao T, Ma B, Liu Y et al (2012) Kindlin 2 forms a transcriptional complex with β-catenin and TCF4 to enhance Wnt signalling. EMBO Rep 13:750–758CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Nobusue H, Onishi N, Shimizu T, Sugihara E, Oki Y, Sumikawa Y et al (2014) Regulation of MKL1 via actin cytoskeleton dynamics drives adipocyte differentiation. Nat Commun 5:3368CrossRefPubMedGoogle Scholar
  13. 13.
    Yao C, Su L, Shan J, Zhu C, Liu L, Liu C et al (2016) IGF/STAT3/NANOG/Slug signaling axis simultaneously controls epithelial-mesenchymal transition and stemness maintenance in colorectal cancer. Stem Cells 34:820–831CrossRefPubMedGoogle Scholar
  14. 14.
    Wang H, Yu C, Gao X, Welte T, Muscarella AM, Tian L et al (2015) The osteogenic niche promotes early-stage bone colonization of disseminated breast cancer cells. Cancer Cell 27:193–210CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Ye Q-H, Zhu W-W, Zhang J-B, Qin Y, Lu M, Lin G-L et al (2016) GOLM1 Modulates EGFR/RTK cell-surface recycling to drive hepatocellular carcinoma metastasis. Cancer Cell 30:444–458CrossRefPubMedGoogle Scholar
  16. 16.
    Tabariès S, Siegel PM (2016) The role of claudins in cancer metastasis. Oncogene. doi: 10.1038/onc.2016.289 PubMedGoogle Scholar
  17. 17.
    Waning DL, Mohammad KS, Reiken S, Xie W, Andersson DC, John S et al (2015) Excess TGF-β mediates muscle weakness associated with bone metastases in mice. Nat Med 21:1262–1271CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Mohme M, Riethdorf S, Pantel K (2016) Circulating and disseminated tumour cells: mechanisms of immune surveillance and escape. Nat Rev Clin Oncol. doi: 10.1038/nrclinonc.2016.144 PubMedGoogle Scholar
  19. 19.
    Ghajar CM, Peinado H, Mori H, Matei IR, Evason KJ, Brazier H et al (2013) The perivascular niche regulates breast tumour dormancy. Nat Cell Biol 15:807–817CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    L. Zhang, L.D. Ridgway, M.D. Wetzel, J. Ngo, W. Yin, D. Kumar et al, The identification and characterization of breast cancer CTCs competent for brain metastasis. Sci Transl Med 5 (2013) 180ra48CrossRefPubMedGoogle Scholar
  21. 21.
    Vishnoi M, Peddibhotla S, Yin W, Scamardo AT, George GC, Hong DS et al (2015) The isolation and characterization of CTC subsets related to breast cancer dormancy. Sci Rep 5:17533CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Alix-Panabières C, Pantel K (2016) Clinical applications of circulating tumor cells and circulating tumor dna as liquid biopsy. Cancer Discov 6:479–491CrossRefPubMedGoogle Scholar
  23. 23.
    Hvichia GE, Parveen Z, Wagner C, Janning M, Quidde J, Stein A et al (2016) A novel microfluidic platform for size and deformability based separation and the subsequent molecular characterization of viable circulating tumor cells. Int J Cancer 138:2894–2904CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Gorges TM, Penkalla N, Schalk T, Joosse SA, Riethdorf S, Tucholski J et al (2016) Enumeration and molecular characterization of tumor cells in lung cancer patients using a novel in vivo device for capturing circulating tumor cells. Clin Cancer Res 22:2197–2206CrossRefPubMedGoogle Scholar
  25. 25.
    Janni WJ, Rack B, L.W.M.M. Terstappen, Pierga J-Y, Taran F-A, Fehm T et al (2016) Pooled analysis of the prognostic relevance of circulating tumor cells in primary breast cancer. Clin Cancer Res 22:2583–2593CrossRefPubMedGoogle Scholar
  26. 26.
    Gorges TM, Kuske A, Röck K, Mauermann O, Müller V, Peine S et al (2016) Accession of tumor heterogeneity by multiplex transcriptome profiling of single circulating tumor cells. Clin Chem 62:1504–1515CrossRefPubMedGoogle Scholar
  27. 27.
    Cayrefourcq L, Mazard T, Joosse S, Solassol J, Ramos J, Assenat E et al (2015) Establishment and characterization of a cell line from human circulating colon cancer cells. Cancer Res 75:892–901CrossRefPubMedGoogle Scholar
  28. 28.
    Heitzer E, Ulz P, Geigl JB, Speicher MR (2016) Non-invasive detection of genome-wide somatic copy number alterations by liquid biopsies. Mol. Oncol 10:494–502CrossRefPubMedGoogle Scholar
  29. 29.
    Heitzer E, Auer M, Hoffmann EM, Pichler M, Gasch C, Ulz P et al (2013) Establishment of tumor-specific copy number alterations from plasma DNA of patients with cancer. Int J Cancer 133:346–356CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Mohan S, Heitzer E, Ulz P, Lafer I, Lax S, Auer M et al (2014) Changes in colorectal carcinoma genomes under anti-EGFR therapy identified by whole-genome plasma DNA sequencing. PLoS Genet 10:e1004271CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ulz P, Thallinger GG, Auer M, Graf R, Kashofer K, Jahn SW et al (2016) Inferring expressed genes by whole-genome sequencing of plasma DNA. Nat Genet 48:1273–1278CrossRefPubMedGoogle Scholar
  32. 32.
    Coffelt SB, Kersten K, Doornebal CW, Weiden J, Vrijland K, Hau C-S et al (2015) IL-17-producing γδ T cells and neutrophils conspire to promote breast cancer metastasis. Nature 522:345–348CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Liu Y, Gu Y, Han Y, Zhang Q, Jiang Z, Zhang X et al (2016) Tumor exosomal RNAs promote lung pre-metastatic niche formation by activating alveolar epithelial TLR3 to recruit neutrophils. Cancer Cell 30:243–256CrossRefPubMedGoogle Scholar
  34. 34.
    Hou J, Zhou Y, Zheng Y, Fan J, Zhou W, Ng IO et al (2014) Hepatic RIG-I predicts survival and interferon-α therapeutic response in hepatocellular carcinoma. Cancer Cell 25:49–63CrossRefPubMedGoogle Scholar
  35. 35.
    Welm AL, Sneddon JB, Taylor C, D.S.A. Nuyten, van de Vijver MJ, Hasegawa BH et al (2007) The macrophage-stimulating protein pathway promotes metastasis in a mouse model for breast cancer and predicts poor prognosis in humans. Proc Natl Acad Sci 104:7570–7575CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Eyob H, Ekiz HA, Derose YS, Waltz SE, Williams MA, Welm AL (2013) Inhibition of ron kinase blocks conversion of micrometastases to overt metastases by boosting antitumor immunity. Cancer Discov 3:751–760CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Davalos AR, Coppe J-P, Campisi J, Desprez P-Y (2010) Senescent cells as a source of inflammatory factors for tumor progression. Cancer Metastasis Rev 29:273–283CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Powell E, Shao J, Yuan Y, Chen H-C, Cai S, Echeverria GV et al (2016) p53 deficiency linked to B cell translocation gene 2 (BTG2) loss enhances metastatic potential by promoting tumor growth in primary and metastatic sites in patient-derived xenograft (PDX) models of triple-negative breast cancer. Breast Cancer Res 18:13CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Cheung KJ, Padmanaban V, Silvestri V, Schipper K, Cohen JD, Fairchild AN et al (2016) Polyclonal breast cancer metastases arise from collective dissemination of keratin 14-expressing tumor cell clusters. Proc Natl Acad Sci U S A 113:E854–E863CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Friedl P, Locker J, Sahai E, Segall JE (2012) Classifying collective cancer cell invasion. Nat Cell Biol 14:777–783CrossRefPubMedGoogle Scholar
  41. 41.
    Denais CM, Gilbert RM, Isermann P, McGregor AL, te Lindert M, Weigelin B et al (2016) Nuclear envelope rupture and repair during cancer cell migration. Science 352:353–358CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Twyman-Saint Victor C, Rech AJ, Maity A, Rengan R, Pauken KE, Stelekati E et al (2015) Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 520:373–377CrossRefPubMedGoogle Scholar
  43. 43.
    Duong CPM, Yong CSM, Kershaw MH, Slaney CY, Darcy PK (2015) Cancer immunotherapy utilizing gene-modified T cells: from the bench to the clinic. Mol Immunol 67:46–57CrossRefPubMedGoogle Scholar
  44. 44.
    Yong CSM, John LB, Devaud C, Prince MH, Johnstone RW, Trapani JA et al (2016) A role for multiple chimeric antigen receptor-expressing leukocytes in antigen-specific responses to cancer. Oncotarget 7:34582–34598PubMedPubMedCentralGoogle Scholar
  45. 45.
    You J, Chang R, Liu B, Zu L, Zhou Q (2016) Nm23-H1 was involved in regulation of KAI1 expression in high-metastatic lung cancer cells L9981. J Thorac Dis 8:1217–1226CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    You J, Zhang Y, Li Y, Fang N, Liu B, Zu L et al (2015) MiR-449a suppresses cell invasion by inhibiting MAP2K1 in non-small cell lung cancer. Am J Cancer Res 5:2730–2744PubMedPubMedCentralGoogle Scholar
  47. 47.
    Li Y, Chen P, Zu L, Liu B, Wang M, Zhou Q (2016) MicroRNA-338-3p suppresses metastasis of lung cancer cells by targeting the EMT regulator Sox4. Am J Cancer Res 6:127–140PubMedPubMedCentralGoogle Scholar
  48. 48.
    Peinado H, Alečković M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G et al (2012) Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 18:883–891CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Hoshino A, Costa-Silva B, Shen T-L, Rodrigues G, Hashimoto A, Tesic Mark M et al (2015) Tumour exosome integrins determine organotropic metastasis. Nature 527:329–335CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Hoshino D, Kirkbride KC, Costello K, Clark ES, Sinha S, Grega-Larson N et al (2013) Exosome secretion is enhanced by invadopodia and drives invasive behavior. Cell Rep 5:1159–1168CrossRefPubMedGoogle Scholar
  51. 51.
    Sung BH, Ketova T, Hoshino D, Zijlstra A, Weaver AM (2015) Directional cell movement through tissues is controlled by exosome secretion. Nat Commun 6:7164CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Di Vizio D, Kim J, Hager MH, Morello M, Yang W, Lafargue CJ et al (2009) Oncosome formation in prostate cancer: association with a region of frequent chromosomal deletion in metastatic disease. Cancer Res 69:5601–5609CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Di Vizio D, Morello M, Dudley AC, Schow PW, Adam RM, Morley S et al (2012) Large oncosomes in human prostate cancer tissues and in the circulation of mice with metastatic disease. Am J Pathol 181:1573–1584CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Li J, Yang X, Guan H, Mizokami A, Keller ET, Xu X et al (2016) Exosome-derived microRNAs contribute to prostate cancer chemoresistance. Int J Oncol 49:838–846PubMedGoogle Scholar
  55. 55.
    Ma L, Teruya-Feldstein J, Weinberg RA (2007) Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449:682–688CrossRefPubMedGoogle Scholar
  56. 56.
    Chen D, Sun Y, Yuan Y, Han Z, Zhang P, Zhang J et al (2014) miR-100 induces epithelial-mesenchymal transition but suppresses tumorigenesis, migration and invasion. PLoS Genet 10:e1004177CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Zhang P, Wei Y, Wang L, Debeb BG, Yuan Y, Zhang J et al (2014) ATM-mediated stabilization of ZEB1 promotes DNA damage response and radioresistance through CHK1. Nat Cell Biol 16:864–875CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Liu B, Sun L, Liu Q, Gong C, Yao Y, Lv X et al (2015) A cytoplasmic NF-κB Interacting long noncoding RNA Blocks IκB phosphorylation and suppresses breast cancer metastasis. Cancer Cell 27:370–381CrossRefPubMedGoogle Scholar
  59. 59.
    Huang W, Cui X, Chen J, Feng Y, Song E, Li J et al (2016) Long non-coding RNA NKILA inhibits migration and invasion of tongue squamous cell carcinoma cells via suppressing epithelial-mesenchymal transition. Oncotarget 7:62520PubMedPubMedCentralGoogle Scholar
  60. 60.
    Zhang L, Zhang S, Yao J, Lowery FJ, Zhang Q, Huang W-C et al (2015) Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature 527:100–104CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Qian B-Z, Li J, Zhang H, Kitamura T, Zhang J, Campion LR et al (2011) CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475:222–225CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Qian B-Z, Zhang H, Li J, He T, Yeo E-J, Soong DYH et al (2015) FLT1 signaling in metastasis-associated macrophages activates an inflammatory signature that promotes breast cancer metastasis. J Exp Med 212:1433–1448CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Katherine Bankaitis
    • 9
    Email author
  • Lucia Borriello
    • 1
  • Thomas Cox
    • 2
  • Conor Lynch
    • 3
  • Andries Zijlstra
    • 4
  • Barbara Fingleton
    • 4
  • Miodrag Gužvić
    • 5
  • Robin Anderson
    • 6
    • 7
  • Josh Neman
    • 8
  1. 1.The Saban Research InstituteChildren’s Hospital Los AngelesLos AngelesUSA
  2. 2.Cancer Division, The Kinghorn Cancer CentreThe Garvan Institute of Medical ResearchSydneyAustralia
  3. 3.H. Lee Moffitt Cancer Center and Research InstituteTampaUSA
  4. 4.Vanderbilt University School of Medicine, Vanderbilt University Medical CenterNashvilleUSA
  5. 5.University of RegensburgRegensburgGermany
  6. 6.The Sir Peter MacCallum Department of OncologyUniversity of MelbourneMelbourneAustralia
  7. 7.Department of Obstetrics and GynaecologyUniversity of MelbourneMelbourneAustralia
  8. 8.Keck School of Medicine, Norris Comprehensive Cancer CenterUniversity of Southern CaliforniaLos AngelesUSA
  9. 9.Metastasis Research Society (MRS)Chapel HillUSA

Personalised recommendations