Clinical & Experimental Metastasis

, Volume 33, Issue 7, pp 637–649 | Cite as

Matricellular TSP-1 as a target of interest for impeding melanoma spreading: towards a therapeutic use for TAX2 peptide

  • Albin Jeanne
  • Camille Boulagnon-Rombi
  • Jérôme Devy
  • Louis Théret
  • Caroline Fichel
  • Nicole Bouland
  • Marie-Danièle Diebold
  • Laurent Martiny
  • Christophe Schneider
  • Stéphane Dedieu
Research Paper


Thrombospondin-1 (TSP-1) is a matricellular glycoprotein known for being highly expressed within a tumor microenvironment, where it promotes an aggressive phenotype particularly by interacting with the CD47 cell-surface receptor. While it originates from the stromal compartment in many malignancies, melanoma is an exception as invasive and metastatic melanoma cells overexpress TSP-1. We recently demonstrated that a new molecular agent that selectively prevents TSP-1 binding to CD47, called TAX2, exhibits anti-cancer properties when administered systemically by decreasing viable tumor tissue within subcutaneous B16 melanoma allografts. At the same time, emerging evidence was published suggesting a contribution of TSP-1 in melanoma metastatic dissemination and resistance to treatment. Through a comprehensive systems biology approach based on multiple genomics and proteomics databases analyses, we first identified a TSP-1-centered interaction network that is overexpressed in metastatic melanoma. Then, we investigated the effects of disrupting TSP-1:CD47 interaction in A375 human malignant melanoma xenografts. In this model, TAX2 systemic administrations induce tumor necrosis by decreasing intra-tumoral blood flow, while concomitantly making tumors less infiltrative. Besides, TAX2 treatment also drastically inhibits B16F10 murine melanoma cells metastatic dissemination and growth in a syngeneic experimental model of lung metastasis, as demonstrated by histopathological analyses as well as longitudinal and quantitative µCT follow-up of metastatic progression. Altogether, the results obtained by combining bioinformatics and preclinical studies strongly suggest that targeting TSP-1/CD47 axis may represent a valuable therapeutic alternative for hampering melanoma spreading.


Thrombospondin-1 CD47 TAX2 peptide Melanoma Metastasis Innovative therapeutic strategy 



Three thrombospondin-1 type 1 repeats


Extracellular matrix


Epithelial-to-mesenchymal transition


Microscale thermophoresis


Protein-protein interaction


Signal-regulatory protein-alpha


Surface plasmon resonance




Micro-computed tomography



The authors acknowledge supports from Centre National de la Recherche Scientifique (CNRS), Région Champagne-Ardenne and SATT Nord. AJ was recipient of grants from the Ministère de l’Enseignement Supérieur et de la Recherche (2010-2013). The authors acknowledge A. Thomachot for editorial assistance.

Supplementary material

10585_2016_9803_MOESM1_ESM.tif (102.5 mb)
Supplementary material 1 (TIFF 104965 kb)
10585_2016_9803_MOESM2_ESM.tif (102.6 mb)
Supplementary material 2 (TIFF 105056 kb)
10585_2016_9803_MOESM3_ESM.tif (102.2 mb)
Supplementary material 3 (TIFF 104647 kb)
10585_2016_9803_MOESM4_ESM.tif (102.5 mb)
Supplementary material 4 (TIFF 104934 kb)
10585_2016_9803_MOESM5_ESM.tif (101.6 mb)
Supplementary material 5 (TIFF 103989 kb)


  1. 1.
    Kazerounian S, Yee KO, Lawler J (2008) Thrombospondins in cancer. Cell Mol Life Sci 65:700–712. doi: 10.1007/s00018-007-7486-z CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Tuszynski G, Smith M, Rothman V et al (1992) Thrombospondin levels in patients with malignancy. Thromb Haemost 67:607–611PubMedGoogle Scholar
  3. 3.
    Naumov GN, Bender E, Zurakowski D et al (2006) A model of human tumor dormancy: an angiogenic switch from the nonangiogenic phenotype. J Natl Cancer Inst 98:316–325. doi: 10.1093/jnci/djj068 CrossRefPubMedGoogle Scholar
  4. 4.
    Watnick RS, Rodriguez RK, Wang S et al (2015) Thrombospondin-1 repression is mediated via distinct mechanisms in fibroblasts and epithelial cells. Oncogene 34:2823–2835. doi: 10.1038/onc.2014.228 CrossRefPubMedGoogle Scholar
  5. 5.
    Lin X-D, Chen S-Q, Qi Y-L et al (2012) Overexpression of thrombospondin-1 in stromal myofibroblasts is associated with tumor growth and nodal metastasis in gastric carcinoma. J Surg Oncol 106:94–100. doi: 10.1002/jso.23037 CrossRefPubMedGoogle Scholar
  6. 6.
    McClenic BK, Mitra RS, Riser BL et al (1989) Production and utilization of extracellular matrix components by human melanocytes. Exp Cell Res 180:314–325CrossRefPubMedGoogle Scholar
  7. 7.
    Straume O, Akslen LA (2001) Expression of vascular endothelial growth factor, its receptors (FLT-1, KDR) and TSP-1 related to microvessel density and patient outcome in vertical growth phase melanomas. Am J Pathol 159:223–235. doi: 10.1016/S0002-9440(10)61688-4 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Gray-Schopfer V, Wellbrock C, Marais R (2007) Melanoma biology and new targeted therapy. Nature 445:851–857. doi: 10.1038/nature05661 CrossRefPubMedGoogle Scholar
  9. 9.
    Lito P, Rosen N, Solit DB (2013) Tumor adaptation and resistance to RAF inhibitors. Nat Med 19:1401–1409. doi: 10.1038/nm.3392 CrossRefPubMedGoogle Scholar
  10. 10.
    Jayachandran A, Anaka M, Prithviraj P et al (2014) Thrombospondin 1 promotes an aggressive phenotype through epithelial-to-mesenchymal transition in human melanoma. Oncotarget 5:5782–5797CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Sick E, Jeanne A, Schneider C et al (2012) CD47 update: a multifaceted actor in the tumour microenvironment of potential therapeutic interest. Br J Pharmacol 167:1415–1430. doi: 10.1111/j.1476-5381.2012.02099.x CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Jeanne A, Schneider C, Martiny L, Dedieu S (2015) Original insights on thrombospondin-1-related antireceptor strategies in cancer. Front Pharmacol 6:252. doi: 10.3389/fphar.2015.00252 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Borsotti P, Ghilardi C, Ostano P et al (2015) Thrombospondin-1 is part of a Slug-independent motility and metastatic program in cutaneous melanoma, in association with VEGFR-1 and FGF-2. Pigment Cell Melanoma Res 28:73–81. doi: 10.1111/pcmr.12319 CrossRefPubMedGoogle Scholar
  14. 14.
    Jeanne A, Sick E, Devy J et al (2015) Identification of TAX2 peptide as a new unpredicted anti-cancer agent. Oncotarget 6:17981–18000CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Riker AI, Enkemann SA, Fodstad O et al (2008) The gene expression profiles of primary and metastatic melanoma yields a transition point of tumor progression and metastasis. BMC Med Genomics 1:13. doi: 10.1186/1755-8794-1-13 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Augustine CK, Jung S-H, Sohn I et al (2010) Gene expression signatures as a guide to treatment strategies for in-transit metastatic melanoma. Mol Cancer Ther 9:779–790. doi: 10.1158/1535-7163.MCT-09-0764 CrossRefPubMedGoogle Scholar
  17. 17.
    Barretina J, Caponigro G, Stransky N et al (2012) The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483:603–607. doi: 10.1038/nature11003 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Brazma A, Parkinson H, Sarkans U et al (2003) ArrayExpress–a public repository for microarray gene expression data at the EBI. Nucleic Acids Res 31:68–71CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Rhodes DR, Kalyana-Sundaram S, Mahavisno V et al (2007) Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia 9:166–180CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Hruz T, Laule O, Szabo G et al (2008) Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes. Adv Bioinformatics 2008:420747. doi: 10.1155/2008/420747 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Keshava Prasad TS, Goel R, Kandasamy K et al (2009) Human protein reference database—2009 update. Nucleic Acids Res 37:D767–D772. doi: 10.1093/nar/gkn892 CrossRefPubMedGoogle Scholar
  22. 22.
    Smoot ME, Ono K, Ruscheinski J et al (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27:431–432. doi: 10.1093/bioinformatics/btq675 CrossRefPubMedGoogle Scholar
  23. 23.
    Breuer K, Foroushani AK, Laird MR et al (2013) InnateDB: systems biology of innate immunity and beyond–recent updates and continuing curation. Nucleic Acids Res 41:D1228–1233. doi: 10.1093/nar/gks1147 CrossRefPubMedGoogle Scholar
  24. 24.
    Launay G, Salza R, Multedo D et al (2015) MatrixDB, the extracellular matrix interaction database: updated content, a new navigator and expanded functionalities. Nucleic Acids Res 43:D321–327. doi: 10.1093/nar/gku1091 CrossRefPubMedGoogle Scholar
  25. 25.
    Uhlén M, Fagerberg L, Hallström BM, et al (2015) Proteomics. Tissue-based map of the human proteome. Science 347:1260419. doi:  10.1126/science.1260419
  26. 26.
    Seidel SAI, Dijkman PM, Lea WA et al (2013) Microscale thermophoresis quantifies biomolecular interactions under previously challenging conditions. Methods 59:301–315. doi: 10.1016/j.ymeth.2012.12.005 CrossRefPubMedGoogle Scholar
  27. 27.
    Kretschmer L, Beckmann I, Thoms K-M et al (2006) Factors predicting the risk of in-transit recurrence after sentinel lymphonodectomy in patients with cutaneous malignant melanoma. Ann Surg Oncol 13:1105–1112. doi: 10.1245/ASO.2006.07.020 CrossRefPubMedGoogle Scholar
  28. 28.
    Langlois B, Perrot G, Schneider C et al (2010) LRP-1 promotes cancer cell invasion by supporting ERK and inhibiting JNK signaling pathways. PLoS One 5:e11584. doi: 10.1371/journal.pone.0011584 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Perrot G, Langlois B, Devy J et al (2012) LRP-1–CD44, a new cell surface complex regulating tumor cell adhesion. Mol Cell Biol 32:3293–3307. doi: 10.1128/MCB.00228-12 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Zaslavsky A, Baek K-H, Lynch RC et al (2010) Platelet-derived thrombospondin-1 is a critical negative regulator and potential biomarker of angiogenesis. Blood 115:4605–4613. doi: 10.1182/blood-2009-09-242065 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Zhang X, Kazerounian S, Duquette M et al (2009) Thrombospondin-1 modulates vascular endothelial growth factor activity at the receptor level. FASEB J 23:3368–3376. doi: 10.1096/fj.09-131649 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Gaustad J-V, Simonsen TG, Andersen LMK, Rofstad EK (2015) Thrombospondin-1 domain-containing peptide properdistatin improves vascular function in human melanoma xenografts. Microvasc Res 98:159–165. doi: 10.1016/j.mvr.2014.02.005 CrossRefPubMedGoogle Scholar
  33. 33.
    De Bock K, Mazzone M, Carmeliet P (2011) Antiangiogenic therapy, hypoxia, and metastasis: risky liaisons, or not? Nat Rev Clin Oncol 8:393–404. doi: 10.1038/nrclinonc.2011.83 CrossRefPubMedGoogle Scholar
  34. 34.
    Kaur S, Soto-Pantoja DR, Stein EV et al (2013) Thrombospondin-1 signaling through CD47 inhibits self-renewal by regulating c-myc and other stem cell transcription factors. Sci Rep. doi: 10.1038/srep01673 Google Scholar
  35. 35.
    Roberts DD, Kaur S, Soto-Pantoja DR (2015) Therapeutic targeting of the thrombospondin-1 receptor CD47 to treat liver cancer. J Cell Commun Signal 9:101–102. doi: 10.1007/s12079-015-0283-9 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Lee TK-W, Cheung VC-H, Lu P et al (2014) Blockade of CD47-mediated cathepsin S/protease-activated receptor 2 signaling provides a therapeutic target for hepatocellular carcinoma. Hepatology 60:179–191. doi: 10.1002/hep.27070 CrossRefPubMedGoogle Scholar
  37. 37.
    Chao MP, Weissman IL, Majeti R (2012) The CD47-SIRPalpha pathway in cancer immune evasion and potential therapeutic implications. Curr Opin Immunol 24:225–232. doi: 10.1016/j.coi.2012.01.010 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    McCracken MN, Cha AC, Weissman IL (2015) Molecular pathways: activating t cells after cancer cell phagocytosis from blockade of CD47 “Don’t Eat Me” signals. Clin Cancer Res 21:3597–3601. doi: 10.1158/1078-0432.CCR-14-2520 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Soto-Pantoja DR, Terabe M, Ghosh A et al (2014) CD47 in the tumor microenvironment limits cooperation between antitumor T-cell immunity and radiotherapy. Cancer Res 74:6771–6783. doi: 10.1158/0008-5472.CAN-14-0037-T CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Kim MJ, Lee J-C, Lee J-J et al (2008) Association of CD47 with natural killer cell-mediated cytotoxicity of head-and-neck squamous cell carcinoma lines. Tumour Biol 29:28–34. doi: 10.1159/000132568 CrossRefPubMedGoogle Scholar
  41. 41.
    Weng T-Y, Huang S-S, Yen M-C et al (2014) A novel cancer therapeutic using thrombospondin 1 in dendritic cells. Mol Ther 22:292–302. doi: 10.1038/mt.2013.236 CrossRefPubMedGoogle Scholar
  42. 42.
    Fischer KR, Durrans A, Lee S et al (2015) Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature. doi: 10.1038/nature15748 Google Scholar
  43. 43.
    Zheng X, Carstens JL, Kim J et al (2015) Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature 527:525–530. doi: 10.1038/nature16064 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Hirata E, Girotti MR, Viros A et al (2015) Intravital imaging reveals how BRAF inhibition generates drug-tolerant microenvironments with high integrin β1/FAK signaling. Cancer Cell 27:574–588. doi: 10.1016/j.ccell.2015.03.008 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Filleur S, Volpert OV, Degeorges A et al (2001) In vivo mechanisms by which tumors producing thrombospondin 1 bypass its inhibitory effects. Genes Dev 15:1373–1382. doi: 10.1101/gad.193501 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Albin Jeanne
    • 1
    • 2
    • 3
  • Camille Boulagnon-Rombi
    • 2
    • 4
  • Jérôme Devy
    • 1
    • 2
  • Louis Théret
    • 1
    • 2
  • Caroline Fichel
    • 5
  • Nicole Bouland
    • 5
  • Marie-Danièle Diebold
    • 2
    • 4
  • Laurent Martiny
    • 1
    • 2
  • Christophe Schneider
    • 1
    • 2
  • Stéphane Dedieu
    • 1
    • 2
  1. 1.Laboratoire SiRMa, Campus Moulin de La Housse, Université de Reims Champagne-Ardenne (URCA), UFR Sciences Exactes Et NaturellesReims Cedex 2France
  2. 2.CNRS UMR 7369, Unité Matrice Extracellulaire Et Dynamique Cellulaire, MEDyCReimsFrance
  3. 3.SATT NordLilleFrance
  4. 4.CHU de Reims, Laboratoire Central D’Anatomie Et de Cytologie PathologiquesReimsFrance
  5. 5.Université de Reims Champagne-Ardenne, Laboratoire D’Anatomie Pathologique, UFR MédecineReimsFrance

Personalised recommendations