Clinical & Experimental Metastasis

, Volume 33, Issue 5, pp 461–473 | Cite as

Cathepsin L in tumor angiogenesis and its therapeutic intervention by the small molecule inhibitor KGP94

  • Dhivya R. SudhanEmail author
  • Maria B. Rabaglino
  • Charles E. Wood
  • Dietmar W. Siemann
Research Paper


A significant proportion of breast cancer patients harbor clinically undetectable micrometastases at the time of diagnosis. If left untreated, these micro-metastases may lead to disease relapse and possibly death. Hence, there is significant interest in the development of novel anti-metastatic agents that could also curb the growth of pre-established micrometastases. Like primary tumor, the growth of metastases also is driven by angiogenesis. Although the role of cysteine protease Cathepsin L (CTSL) in metastasis associated tumor cell functions such as migration and invasion is well recognized, its role in tumor angiogenesis remains less explored. The present study examines the contribution of CTSL to breast cancer angiogenesis and evaluates the anti-angiogenic efficacy of CTSL inhibitor KGP94. CTSL semi-quantitative RT-PCR analysis on breast tissue panels revealed significant upregulation of CTSL in breast cancer patients which strongly correlated with increased relapse and metastatic incidence and poor overall survival. Preclinically, CTSL ablation using shRNA or KGP94 treatment led to a significant reduction in MDA-MB-231 tumor cell induced angiogenesis in vivo. In-vitro assessments demonstrated a significant decrease in various angiogenic properties such as endothelial cell sprouting, migration, invasion, tube formation and proliferation in the presence of KGP94. Microarray analyses revealed a significant upregulation of cell cycle related genes by CTSL. Western blot analyses further confirmed upregulation of members of the cyclin family by CTSL. Collectively, these data indicate that CTSL is an important contributor to tumor angiogenesis and that the CTSL inhibition may have therapeutic utility in the treatment of breast cancer patients.


Cathepsin L Breast cancer Angiogenesis KGP94 



The authors thank Dr. Kevin Pinney of Baylor University and OXiGENE Inc. for providing KGP94. These studies were supported in part by a grant from the National Cancer Institute (US Public Health Service Grant R01 CA169300).

Compliance with ethical standards

Conflicts of interest

The authors have no conflict of interest to disclose.

Supplementary material

10585_2016_9790_MOESM1_ESM.pptx (1.1 mb)
Supplementary material 1 (PPTX 1125 kb)
10585_2016_9790_MOESM2_ESM.pptx (46 kb)
Supplementary material 2 (PPTX 45 kb)


  1. 1.
    Siegel R et al (2014) Cancer statistics, 2014. CA Cancer J Clin 64(1):9–29CrossRefPubMedGoogle Scholar
  2. 2.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674CrossRefPubMedGoogle Scholar
  3. 3.
    Siemann DW (2011) The unique characteristics of tumor vasculature and preclinical evidence for its selective disruption by tumor-vascular disrupting agents. Cancer Treat Rev 37(1):63–74CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Weidner N et al (1991) Tumor angiogenesis and metastasis–correlation in invasive breast carcinoma. N Engl J Med 324(1):1–8CrossRefPubMedGoogle Scholar
  5. 5.
    Burden RE et al (2009) Antibody-mediated inhibition of cathepsin S blocks colorectal tumor invasion and angiogenesis. Clin Cancer Res 15(19):6042–6051CrossRefPubMedGoogle Scholar
  6. 6.
    Lakka SS et al (2004) Inhibition of cathepsin B and MMP-9 gene expression in glioblastoma cell line via RNA interference reduces tumor cell invasion, tumor growth and angiogenesis. Oncogene 23(27):4681–4689CrossRefPubMedGoogle Scholar
  7. 7.
    Chauhan SS, Goldstein LJ, Gottesman MM (1991) Expression of cathepsin L in human tumors. Cancer Res 51(5):1478–1481PubMedGoogle Scholar
  8. 8.
    Sudhan DR, Siemann DW (2015) Cathepsin L targeting in cancer treatment. Pharmacol Ther 155:105–116CrossRefPubMedGoogle Scholar
  9. 9.
    Chapman HA, Riese RJ, Shi GP (1997) Emerging roles for cysteine proteases in human biology. Annu Rev Physiol 59:63–88CrossRefPubMedGoogle Scholar
  10. 10.
    Gottesman MM, Sobel ME (1980) Tumor promoters and Kirsten sarcoma virus increase synthesis of a secreted glycoprotein by regulating levels of translatable mRNA. Cell 19(2):449–455CrossRefPubMedGoogle Scholar
  11. 11.
    Rabin MS, Doherty PJ, Gottesman MM (1986) The tumor promoter phorbol 12-myristate 13-acetate induces a program of altered gene expression similar to that induced by platelet-derived growth factor and transforming oncogenes. Proc Natl Acad Sci USA 83(2):357–360CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Denhardt DT et al (1986) Close relationship of the major excreted protein of transformed murine fibroblasts to thiol-dependent cathepsins. Cancer Res 46(9):4590–4593PubMedGoogle Scholar
  13. 13.
    Jordans S et al (2009) Monitoring compartment-specific substrate cleavage by cathepsins B, K, L, and S at physiological pH and redox conditions. BMC Biochem 10:23CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Novinec M, Lenarcic B, Turk B (2014) Cysteine cathepsin activity regulation by glycosaminoglycans. Biomed Res Int 2014:309718CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Everts V et al (2006) Osteoclastic bone degradation and the role of different cysteine proteinases and matrix metalloproteinases: differences between calvaria and long bone. J Bone Miner Res 21(9):1399–1408CrossRefPubMedGoogle Scholar
  16. 16.
    Goretzki L et al (1992) Effective activation of the proenzyme form of the urokinase-type plasminogen activator (pro-uPA) by the cysteine protease cathepsin L. FEBS Lett 297(1–2):112–118CrossRefPubMedGoogle Scholar
  17. 17.
    Ishidoh K, Kominami E (1995) Procathepsin L degrades extracellular matrix proteins in the presence of glycosaminoglycans in vitro. Biochem Biophys Res Commun 217(2):624–631CrossRefPubMedGoogle Scholar
  18. 18.
    Laurent-Matha V et al (2006) Processing of human cathepsin D is independent of its catalytic function and auto-activation: involvement of cathepsins L and B. J Biochem 139(3):363–371CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Mason RW et al (1986) Elastinolytic activity of human cathepsin L. Biochem J 233(3):925–927CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Frade R et al (1998) Procathepsin-L, a proteinase that cleaves human C3 (the third component of complement), confers high tumorigenic and metastatic properties to human melanoma cells. Cancer Res 58(13):2733–2736PubMedGoogle Scholar
  21. 21.
    Gocheva V et al (2006) Distinct roles for cysteine cathepsin genes in multistage tumorigenesis. Genes Dev 20(5):543–556CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Chavarria GE et al (2012) Initial evaluation of the antitumour activity of KGP94, a functionalized benzophenone thiosemicarbazone inhibitor of cathepsin L. Eur J Med Chem 58:568–572CrossRefPubMedGoogle Scholar
  23. 23.
    Sudhan DR, Siemann DW (2013) Cathepsin L inhibition by the small molecule KGP94 suppresses tumor microenvironment enhanced metastasis associated cell functions of prostate and breast cancer cells. Clin Exp Metastasis 30(7):891–902CrossRefPubMedGoogle Scholar
  24. 24.
    Sudhan DR et al (2016) Cathepsin L inactivation leads to multimodal inhibition of prostate cancer cell dissemination in a preclinical bone metastasis model. Int J Cancer 138:2665–2677CrossRefPubMedGoogle Scholar
  25. 25.
    Kumar GD et al (2010) Functionalized benzophenone, thiophene, pyridine, and fluorene thiosemicarbazone derivatives as inhibitors of cathepsin L. Bioorg Med Chem Lett 20(22):6610–6615CrossRefPubMedGoogle Scholar
  26. 26.
    Gyorffy B et al (2010) An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res Treat 123(3):725–731CrossRefPubMedGoogle Scholar
  27. 27.
    Siemann DW et al (2009) Impact of tumor cell VEGF expression on the in vivo efficacy of vandetanib (ZACTIMA; ZD6474). Anticancer Res 29(6):1987–1992PubMedPubMedCentralGoogle Scholar
  28. 28.
    Smyth GK (2005) Limma: linear models for microarray data, vol. 397–420. Springer, New YorkGoogle Scholar
  29. 29.
    de Hoon MJL, Imoto S, Nolan J, Miyano S (2004) Open source clustering software. Bioinform Appl Notes 20(9):1453–1454CrossRefGoogle Scholar
  30. 30.
    Subramanian A et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102(43):15545–15550CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Shannon P et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Montojo J et al (2010) GeneMANIA Cytoscape plugin: fast gene function predictions on the desktop. Bioinformatics 26(22):2927–2928CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Nishida Y et al (1995) Increased cathepsin L levels in serum in some patients with ovarian cancer: comparison with CA125 and CA72-4. Gynecol Oncol 56(3):357–361CrossRefPubMedGoogle Scholar
  34. 34.
    Siewinski M et al (2004) Determination of cysteine peptidases-like activity and their inhibitors in the serum of patients with ovarian cancer treated by conventional chemotherapy and vitamin E. J Exp Ther Oncol 4(3):189–193PubMedGoogle Scholar
  35. 35.
    Svatek RS et al (2008) Role of urinary cathepsin B and L in the detection of bladder urothelial cell carcinoma. J Urol 179(2):478–484 discussion 84 CrossRefPubMedGoogle Scholar
  36. 36.
    Tumminello FM et al (1996) Cathepsin D, B and L circulating levels as prognostic markers of malignant progression. Anticancer Res 16(4B):2315–2319PubMedGoogle Scholar
  37. 37.
    van Hinsbergh VW, Koolwijk P (2008) Endothelial sprouting and angiogenesis: matrix metalloproteinases in the lead. Cardiovasc Res 78(2):203–212CrossRefPubMedGoogle Scholar
  38. 38.
    Arnaoutova I, Kleinman HK (2010) In vitro angiogenesis: endothelial cell tube formation on gelled basement membrane extract. Nat Protoc 5(4):628–635CrossRefPubMedGoogle Scholar
  39. 39.
    Zhang J et al (2010) Plasma cathepsin L and its related pro/antiangiogenic factors play useful roles in predicting rich coronary collaterals in patients with coronary heart disease. J Int Med Res 38(4):1389–1403CrossRefPubMedGoogle Scholar
  40. 40.
    Sun J et al (2011) Cathepsin L activity is essential to elastase perfusion-induced abdominal aortic aneurysms in mice. Arterioscler Thromb Vasc Biol 31(11):2500–2508CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Keerthivasan S et al (2007) Transcriptional upregulation of human cathepsin L by VEGF in glioblastoma cells. Gene 399(2):129–136CrossRefPubMedGoogle Scholar
  42. 42.
    Jain M et al (2010) Cathepsins B and L in peripheral blood mononuclear cells of pediatric acute myeloid leukemia: potential poor prognostic markers. Ann Hematol 89(12):1223–1232CrossRefPubMedGoogle Scholar
  43. 43.
    Samaiya M et al (2011) Epigenetic regulation of cathepsin L expression in chronic myeloid leukaemia. J Cell Mol Med 15(10):2189–2199CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Tamada Y et al (2000) Involvement of cysteine proteases in bFGF-induced angiogenesis in guinea pig and rat cornea. J Ocul Pharmacol Ther 16(3):271–283CrossRefPubMedGoogle Scholar
  45. 45.
    Chung JH et al (2011) Cathepsin L derived from skeletal muscle cells transfected with bFGF promotes endothelial cell migration. Exp Mol Med 43(4):179–188CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Asanuma K et al (2002) Selective modulation of the secretion of proteinases and their inhibitors by growth factors in cultured differentiated podocytes. Kidney Int 62(3):822–831CrossRefPubMedGoogle Scholar
  47. 47.
    Eilken HM, Adams RH (2010) Dynamics of endothelial cell behavior in sprouting angiogenesis. Curr Opin Cell Biol 22(5):617–625CrossRefPubMedGoogle Scholar
  48. 48.
    Frade R, Rousselet N, Jean D (2008) Intratumoral gene delivery of anti-cathepsin L single-chain variable fragment by lentiviral vector inhibits tumor progression induced by human melanoma cells. Cancer Gene Ther 15(9):591–604CrossRefPubMedGoogle Scholar
  49. 49.
    Dennemarker J et al (2010) Deficiency for the cysteine protease cathepsin L promotes tumor progression in mouse epidermis. Oncogene 29(11):1611–1621CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Urbich C et al (2005) Cathepsin L is required for endothelial progenitor cell-induced neovascularization. Nat Med 11(2):206–213CrossRefPubMedGoogle Scholar
  51. 51.
    Handsley MM, Edwards DR (2005) Metalloproteinases and their inhibitors in tumor angiogenesis. Int J Cancer 115(6):849–860CrossRefPubMedGoogle Scholar
  52. 52.
    Rebbaa A et al (2009) The anti-angiogenic activity of NSITC, a specific cathepsin L inhibitor. Anticancer Res 29(11):4473–4481PubMedGoogle Scholar
  53. 53.
    Yu Q, Stamenkovic I (2000) Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev 14(2):163–176PubMedPubMedCentralGoogle Scholar
  54. 54.
    Yu WH et al (2002) CD44 anchors the assembly of matrilysin/MMP-7 with heparin-binding epidermal growth factor precursor and ErbB4 and regulates female reproductive organ remodeling. Genes Dev 16(3):307–323CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Paez-Ribes M et al (2009) Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15(3):220–231CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Cairns RA, Hill RP (2004) Acute hypoxia enhances spontaneous lymph node metastasis in an orthotopic murine model of human cervical carcinoma. Cancer Res 64(6):2054–2061CrossRefPubMedGoogle Scholar
  57. 57.
    Keith B, Simon MC (2007) Hypoxia-inducible factors, stem cells, and cancer. Cell 129(3):465–472CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Horsman MR, Siemann DW (2006) Pathophysiologic effects of vascular-targeting agents and the implications for combination with conventional therapies. Cancer Res 66(24):11520–11539CrossRefPubMedGoogle Scholar
  59. 59.
    Siemann DW, Horsman MR (2015) Modulation of the tumor vasculature and oxygenation to improve therapy. Pharmacol Ther 153:107–124CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Dhivya R. Sudhan
    • 1
    • 5
    Email author
  • Maria B. Rabaglino
    • 4
  • Charles E. Wood
    • 3
  • Dietmar W. Siemann
    • 1
    • 2
  1. 1.Department of Radiation OncologyUniversity of Florida Health Cancer CenterGainesvilleUSA
  2. 2.Department of Pharmacology and Therapeutics, College of MedicineUniversity of FloridaGainesvilleUSA
  3. 3.Department of Physiology and Functional Genomics, College of MedicineUniversity of FloridaGainesvilleUSA
  4. 4.CEPROCOR, National Scientific and Technical Research Council (CONICET)CórdobaArgentina
  5. 5.Cancer and Genetics Research ComplexUniversity of Florida Health Cancer CenterGainesvilleUSA

Personalised recommendations