Clinical & Experimental Metastasis

, Volume 32, Issue 8, pp 819–833 | Cite as

Skeletal metastases from breast cancer: pathogenesis of bone tropism and treatment strategy

  • Caterina Fontanella
  • Valentina Fanotto
  • Karim Rihawi
  • Giuseppe Aprile
  • Fabio Puglisi


Breast cancer (BC) is the most common female cancer worldwide with approximately 10 % of new cases metastatic at diagnosis and 20–50 % of patients with early BC who will eventually develop metastatic disease. Bone is the most frequent site of colonisation and the development of skeletal metastases depends on a complex multistep process, from dissemination and survival of malignant cells into circulation to the actual homing and metastases formation inside bone. Disseminated tumor cells (DTCs) can be detected in bone marrow in approximately 30 % of BC patients, likely reflecting the presence of minimal residual disease that would eventually account for subsequent metastatic disease. Patients with bone marrow DTCs have poorer overall survival compared with patients without them. Although bone-only metastatic disease seems to have a rather indolent behavior compared to visceral disease, bone metastases can cause severe and debilitating effects, including pain, spinal cord compression, hypercalcemia and pathologic fractures. Delivering an appropriate treatment is therefore paramount and ideally it should require interdisciplinary care. Multiple options are currently available, from bisphosphonates to new drugs targeting RANK ligand and radiotherapy. In this review we describe the mechanisms underlying bone colonization and provide an update on existing systemic and locoregional treatments for bone metastases.


Breast cancer Bone metastases Pathogenesis Bisphosphonates RANK ligand Palliative radiotherapy 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Siegel RL, Miller KD, Jemal A (2015) Cancer statistics, 2015. CA Cancer J Clin 65:5–29PubMedCrossRefGoogle Scholar
  2. 2.
    Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. CA Cancer J Clin 63:11–30PubMedCrossRefGoogle Scholar
  3. 3.
    Siegel R, DeSantis C, Virgo K et al (2012) Cancer treatment and survivorship statistics, 2012. CA Cancer J Clin 62:220–241PubMedCrossRefGoogle Scholar
  4. 4.
    Cheng L, Swartz MD, Zhao H et al (2012) Hazard of recurrence among women after primary breast cancer treatment—a 10-year follow-up using data from SEER-Medicare. Cancer Epidemiol Biomarkers Prev 21:800–809PubMedCrossRefGoogle Scholar
  5. 5.
    Kennecke H, Yerushalmi R, Woods R et al (2010) Metastatic behavior of breast cancer subtypes. J Clin Oncol 28:3271–3277PubMedCrossRefGoogle Scholar
  6. 6.
    Manders K, van de Poll-Franse LV, Creemers GJ et al (2006) Clinical management of women with metastatic breast cancer: a descriptive study according to age group. BMC Cancer 6:179PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Gerratana L, Fanotto V, Bonotto M et al (2015) Pattern of metastasis and outcome in patients with breast cancer. Clin Exp Metastasis 32:125–133PubMedCrossRefGoogle Scholar
  8. 8.
    Berman AT, Thukral AD, Hwang WT et al (2013) Incidence and patterns of distant metastases for patients with early-stage breast cancer after breast conservation treatment. Clin Breast Cancer 13:88–94PubMedCrossRefGoogle Scholar
  9. 9.
    Domchek SM, Younger J, Finkelstein DM, Seiden MV (2000) Predictors of skeletal complications in patients with metastatic breast carcinoma. Cancer 89:363–368PubMedCrossRefGoogle Scholar
  10. 10.
    Bonotto M, Gerratana L, Poletto E et al (2014) Measures of outcome in metastatic breast cancer: insights from a real-world scenario. Oncologist 19:608–615PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Roodman GD (2004) Mechanisms of bone metastasis. N Engl J Med 350:1655–1664PubMedCrossRefGoogle Scholar
  12. 12.
    Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62PubMedCrossRefGoogle Scholar
  13. 13.
    Igney FH, Krammer PH (2002) Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer 2:277–288PubMedCrossRefGoogle Scholar
  14. 14.
    Codogno P, Meijer AJ (2005) Autophagy and signaling: their role in cell survival and cell death. Cell Death Differ 12(Suppl 2):1509–1518PubMedCrossRefGoogle Scholar
  15. 15.
    Su Z, Yang Z, Xu Y et al (2015) Apoptosis, autophagy, necroptosis, and cancer metastasis. Mol Cancer 14:48PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Ewing J (1928) neoplastic diseases: a treatise on tumors. W.B Saunders Co, PhiladelphiaGoogle Scholar
  17. 17.
    Ottewell PD, O’Donnell L, Holen I (2015) Molecular alterations that drive breast cancer metastasis to bone. Bonekey Rep 4:643PubMedCrossRefGoogle Scholar
  18. 18.
    Mishra A, Shiozawa Y, Pienta KJ (2011) Homing of cancer cells to the bone. Cancer Microenviron 4:221–235PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Salcedo R, Oppenheim JJ (2003) Role of chemokines in angiogenesis: cXCL12/SDF-1 and CXCR4 interaction, a key regulator of endothelial cell responses. Microcirculation 10:359–370PubMedCrossRefGoogle Scholar
  20. 20.
    Schneider JG, Amend SR, Weilbaecher KN (2011) Integrins and bone metastasis: integrating tumor cell and stromal cell interactions. Bone 48:54–65PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Weilbaecher KN, Guise TA, McCauley LK (2011) Cancer to bone: a fatal attraction. Nat Rev Cancer 11:411–425PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Nutter F, Holen I, Brown HK et al (2014) Different molecular profiles are associated with breast cancer cell homing compared with colonisation of bone:evidence using a novel bone-seeking cell line. Endocr Relat Cancer 21:327–341PubMedCrossRefGoogle Scholar
  23. 23.
    Sethi N, Dai X, Winter CG et al (2011) Tumor-derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells. Cancer Cell 19:192–205PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Santagata S, Demichelis F, Riva A et al (2004) JAGGED1 expression is associated with prostate cancer metastasis and recurrence. Cancer Res 64:6854–6857PubMedCrossRefGoogle Scholar
  25. 25.
    Dallas SL, Rosser JL, Mundy GR, Bonewald LF (2002) Proteolysis of latent transforming growth factor-beta (TGF-beta)-binding protein-1 by osteoclasts. A cellular mechanism for release of TGF-beta from bone matrix. J Biol Chem 277:21352–21360PubMedCrossRefGoogle Scholar
  26. 26.
    Shiozawa Y, Havens AM, Jung Y et al (2008) Annexin II/annexin II receptor axis regulates adhesion, migration, homing, and growth of prostate cancer. J Cell Biochem 105:370–380PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Janni W, Vogl FD, Wiedswang G et al (2011) Persistence of disseminated tumor cells in the bone marrow of breast cancer patients predicts increased risk for relapse—a European pooled analysis. Clin Cancer Res 17:2967–2976PubMedCrossRefGoogle Scholar
  28. 28.
    Vessella RL, Pantel K, Mohla S (2007) Tumor cell dormancy: an NCI workshop report. Cancer Biol Ther 6:1496–1504PubMedCrossRefGoogle Scholar
  29. 29.
    Lu X, Mu E, Wei Y et al (2011) VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging α4β1-positive osteoclast progenitors. Cancer Cell 20:701–714PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Lim PK, Bliss SA, Patel SA et al (2011) Gap junction-mediated import of microRNA from bone marrow stromal cells can elicit cell cycle quiescence in breast cancer cells. Cancer Res 71:1550–1560PubMedCrossRefGoogle Scholar
  31. 31.
    Tan X, Weng T, Zhang J et al (2007) Smad4 is required for maintaining normal murine postnatal bone homeostasis. J Cell Sci 120:2162–2170PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Ding Z, Wu CJ, Chu GC et al (2011) SMAD4-dependent barrier constrains prostate cancer growth and metastatic progression. Nature 470:269–273PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Chu GC, Chung LW (2014) RANK-mediated signaling network and cancer metastasis. Cancer Metastasis Rev 33:497–509PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Tan W, Zhang W, Strasner A et al (2011) Tumour-infiltrating regulatory T cells stimulate mammary cancer metastasis through RANKL-RANK signalling. Nature 470:548–553PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Dougall WC (2012) Molecular pathways: osteoclast-dependent and osteoclast-independent roles of the RANKL/RANK/OPG pathway in tumorigenesis and metastasis. Clin Cancer Res 18:326–335PubMedCrossRefGoogle Scholar
  36. 36.
    Fradet A, Sorel H, Bouazza L et al (2011) Dual function of ERRα in breast cancer and bone metastasis formation: implication of VEGF and osteoprotegerin. Cancer Res 71:5728–5738PubMedCrossRefGoogle Scholar
  37. 37.
    McCoy EM, Hong H, Pruitt HC, Feng X (2013) IL-11 produced by breast cancer cells augments osteoclastogenesis by sustaining the pool of osteoclast progenitor cells. BMC Cancer 13:16PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Miossec P, Korn T, Kuchroo VK (2009) Interleukin-17 and type 17 helper T cells. N Engl J Med 361:888–898PubMedCrossRefGoogle Scholar
  39. 39.
    D’Amico L, Roato I (2015) The impact of immune system in regulating bone metastasis formation by osteotropic tumors. J Immunol Res 2015:143526PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Arai F, Hirao A, Ohmura M et al (2004) Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118:149–161PubMedCrossRefGoogle Scholar
  41. 41.
    Braun S, Vogl FD, Naume B et al (2005) A pooled analysis of bone marrow micrometastasis in breast cancer. N Engl J Med 353:793–802PubMedCrossRefGoogle Scholar
  42. 42.
    Molloy TJ, Bosma AJ, Baumbusch LO et al (2011) The prognostic significance of tumour cell detection in the peripheral blood versus the bone marrow in 733 early-stage breast cancer patients. Breast Cancer Res 13:R61PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Mountzios G, Ramfidis V, Terpos E, Syrigos KN (2011) Prognostic significance of bone markers in patients with lung cancer metastatic to the skeleton: a review of published data. Clin Lung Cancer 12:341–349PubMedCrossRefGoogle Scholar
  44. 44.
    Janjan NA, Payne R, Gillis T et al (1998) Presenting symptoms in patients referred to a multidisciplinary clinic for bone metastases. J Pain Symptom Manag 16:171–178CrossRefGoogle Scholar
  45. 45.
    Puglisi F, Fontanella C, Numico G et al (2014) Follow-up of patients with early breast cancer: is it time to rewrite the story? Crit Rev Oncol Hematol 91:130–141PubMedCrossRefGoogle Scholar
  46. 46.
    Puglisi F, Follador A, Minisini AM et al (2005) Baseline staging tests after a new diagnosis of breast cancer: further evidence of their limited indications. Ann Oncol 16:263–266PubMedCrossRefGoogle Scholar
  47. 47.
    Puglisi F, Andreetta C, Fasola G et al (2007) Bone scan for baseline staging in invasive breast cancer at the time of primary presentation. Breast Care 2:358–364CrossRefGoogle Scholar
  48. 48.
    Fuster D, Duch J, Paredes P et al (2008) Preoperative staging of large primary breast cancer with [18F]fluorodeoxyglucose positron emission tomography/computed tomography compared with conventional imaging procedures. J Clin Oncol 26:4746–4751PubMedCrossRefGoogle Scholar
  49. 49.
    Evangelista L, Panunzio A, Polverosi R et al (2012) Early bone marrow metastasis detection: the additional value of FDG-PET/CT versus CT imaging. Biomed Pharmacother 66:448–453PubMedCrossRefGoogle Scholar
  50. 50.
    Ohta M, Tokuda Y, Suzuki Y et al (2001) Whole body PET for the evaluation of bony metastases in patients with breast cancer: comparison with 99Tcm-MDP bone scintigraphy. Nucl Med Commun 22:875–879PubMedCrossRefGoogle Scholar
  51. 51.
    Mühlhausen U, Komljenovic D, Bretschi M et al (2011) A novel PET tracer for the imaging of αvβ3 and αvβ5 integrins in experimental breast cancer bone metastases. Contrast Media Mol Imaging 6:413–420PubMedCrossRefGoogle Scholar
  52. 52.
    World Health Organization (WHO) (1979) WHO handbook for reporting results of cancer treatment. World Health Organization Offset Publication, GenevaGoogle Scholar
  53. 53.
    Hamaoka T, Costelloe CM, Madewell JE et al (2010) Tumour response interpretation with new tumour response criteria versus the World Health Organisation criteria in patients with bone-only metastatic breast cancer. Br J Cancer 102:651–657PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Hayashi N, Costelloe CM, Hamaoka T et al (2013) A prospective study of bone tumor response assessment in metastatic breast cancer. Clin Breast Cancer 13:24–30PubMedCrossRefGoogle Scholar
  55. 55.
    Cardoso F, Costa A, Norton L et al (2014) ESO-ESMO 2nd international consensus guidelines for advanced breast cancer (ABC2)†. Ann Oncol 25:1871–1888PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Dunstan CR, Felsenberg D, Seibel MJ (2007) Therapy insight: the risks and benefits of bisphosphonates for the treatment of tumor-induced bone disease. Nat Clin Pract Oncol 4:42–55PubMedCrossRefGoogle Scholar
  57. 57.
    Coleman RE (2005) Bisphosphonates in breast cancer. Ann Oncol 16:687–695PubMedCrossRefGoogle Scholar
  58. 58.
    Kanis JA, McCloskey EV (1997) Clodronate. Cancer 80(Suppl 8):1691–1695PubMedCrossRefGoogle Scholar
  59. 59.
    Paterson AH, Powles TJ, Kanis JA et al (1993) Double-blind controlled trial of oral clodronate in patients with bone metastases from breast cancer. J Clin Oncol 11:59–65PubMedGoogle Scholar
  60. 60.
    Kristensen B, Ejlertsen B, Groenvold M et al (1999) Oral clodronate in breast cancer patients with bone metastases: a randomized study. J Intern Med 246:67–74PubMedCrossRefGoogle Scholar
  61. 61.
    Conte PF, Latreille J, Mauriac L et al (1996) Delay in progression of bone metastases in breast cancer patients treated with intravenous pamidronate: results from a multinational randomized controlled trial. The Aredia Multinational Cooperative Group. J Clin Oncol 14:2552–2559PubMedGoogle Scholar
  62. 62.
    Hortobagyi GN, Theriault RL, Lipton A et al (1998) Long-term prevention of skeletal complications of metastatic breast cancer with pamidronate. Protocol 19 Aredia Breast Cancer Study Group. J Clin Oncol 16:2038–2044PubMedGoogle Scholar
  63. 63.
    Hultborn R, Gundersen S, Ryden S et al (1999) Efficacy of pamidronate in breast cancer with bone metastases: a randomized, double-blind placebo-controlled multicenter study. Anticancer Res 19:3383–3392PubMedGoogle Scholar
  64. 64.
    Theriault RL, Lipton A, Hortobagyi GN et al (1999) Pamidronate reduces skeletal morbidity in women with advanced breast cancer and lytic bone lesions: a randomized, placebo-controlled trial. Protocol 18 Aredia Breast Cancer Study Group. J Clin Oncol 17:846–854PubMedGoogle Scholar
  65. 65.
    Lipton A, Theriault RL, Hortobagyi GN et al (2000) Pamidronate prevents skeletal complications and is effective palliative treatment in women with breast carcinoma and osteolytic bone metastases: long term follow-up of two randomized, placebo-controlled trials. Cancer 88:1082–1090PubMedCrossRefGoogle Scholar
  66. 66.
    Fitton A, McTavish D (1991) Pamidronate. A review of its pharmacological properties and therapeutic efficacy in resorptive bone disease. Drugs 41:289–318PubMedCrossRefGoogle Scholar
  67. 67.
    Romanus D, Iscoe N, Deangelis C et al (2004) Cost analysis of secondary prophylaxis with oral clodronate versus pamidronate in metastatic breast cancer patients. Support Care Cancer 12:844–851PubMedCrossRefGoogle Scholar
  68. 68.
    Berenson JR, Hillner BE, Kyle RA et al (2002) American society of clinical oncology bisphosphonates expert panel. American society of clinical oncology clinical practice guidelines: the role of bisphosphonates in multiple myeloma. J Clin Oncol 20:3719–3736PubMedCrossRefGoogle Scholar
  69. 69.
    Body JJ, Diel IJ, Lichinitser MR et al (2003) MF 4265 Study Group. Intravenous ibandronate reduces the incidence of skeletal complications in patients with breast cancer and bone metastases. Ann Oncol 14:1399–1405PubMedCrossRefGoogle Scholar
  70. 70.
    Body JJ, Diel IJ, Bell R et al (2004) Oral ibandronate improves bone pain and preserves quality of life in patients with skeletal metastases due to breast cancer. Pain 111:306–312PubMedCrossRefGoogle Scholar
  71. 71.
    Heras P, Kritikos K, Hatzopoulos A, Georgopoulou AP (2009) Efficacy of ibandronate for the treatment of skeletal events in patients with metastatic breast cancer. Eur J Cancer Care (Engl) 18:653–656CrossRefGoogle Scholar
  72. 72.
    Tripathy D, Lichinitzer M, Lazarev A et al (2004) MF 4434 Study Group. Oral ibandronate for the treatment of metastatic bone disease in breast cancer: efficacy and safety results from a randomized, double-blind, placebo-controlled trial. Ann Oncol 15:743–750PubMedCrossRefGoogle Scholar
  73. 73.
    Body JJ, Diel IJ, Lichinitzer M et al (2004) Oral ibandronate reduces the risk of skeletal complications in breast cancer patients with metastatic bone disease: results from two randomised, placebo-controlled phase III studies. Br J Cancer 90:1133–1137PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    Body JJ, Lichinitser M, Tjulandin S et al (2007) Oral ibandronate is as active as intravenous zoledronic acid for reducing bone turnover markers in women with breast cancer and bone metastases. Ann Oncol 18:1165–1171PubMedCrossRefGoogle Scholar
  75. 75.
    Mancini I, Dumon JC, Body JJ (2004) Efficacy and safety of ibandronate in the treatment of opioid-resistant bone pain associated with metastatic bone disease: a pilot study. J Clin Oncol 22:3587–3592PubMedCrossRefGoogle Scholar
  76. 76.
    Kohno N, Aogi K, Minami H et al (2005) Zoledronic acid significantly reduces skeletal complications compared with placebo in Japanese women with bone metastases from breast cancer: a randomized, placebo-controlled trial. J Clin Oncol 23:3314–3321PubMedCrossRefGoogle Scholar
  77. 77.
    Niikura N, Liu J, Hayashi N et al (2012) Retrospective analysis of antitumor effects of zoledronic acid in breast cancer patients with bone-only metastases. Cancer 118:2039–2047PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    Rosen LS, Gordon D, Kaminski M et al (2001) Zoledronic acid versus pamidronate in the treatment of skeletal metastases in patients with breast cancer or osteolytic lesions of multiple myeloma: a phase III, double-blind, comparative trial. Cancer J 7:377–387PubMedGoogle Scholar
  79. 79.
    Lipton A, Small E, Saad F et al (2002) The new bisphosphonate, Zometa (zoledronic acid), decreases skeletal complications in both osteolytic and osteoblastic lesions: a comparison to pamidronate. Cancer Invest 20(Suppl 2):45–54PubMedCrossRefGoogle Scholar
  80. 80.
    Barrett-Lee P, Casbard A, Abraham J et al (2014) Oral ibandronic acid versus intravenous zoledronic acid in treatment of bone metastases from breast cancer: a randomised, open label, non-inferiority phase 3 trial. Lancet Oncol 15:114–122PubMedCrossRefGoogle Scholar
  81. 81.
    Bamias A, Kastritis E, Bamia C et al (2005) Osteonecrosis of the jaw in cancer after treatment with bisphosphonates: incidence and risk factors. J Clin Oncol 23:8580–8587PubMedCrossRefGoogle Scholar
  82. 82.
    Amadori D, Aglietta M, Alessi B et al (2013) Efficacy and safety of 12-weekly versus 4-weekly zoledronic acid for prolonged treatment of patients with bone metastases from breast cancer (ZOOM): a phase 3, open-label, randomised, non-inferiority trial. Lancet Oncol 14:663–670PubMedCrossRefGoogle Scholar
  83. 83.
    Brown JE, Coleman RE (2012) Denosumab in patients with cancer—a surgical strike against the osteoclast. Nat Rev Clin Oncol 9:110–118PubMedCrossRefGoogle Scholar
  84. 84.
    Body JJ, Facon T, Coleman RE et al (2006) A study of the biological receptor activator of nuclear factor-κB ligand inhibitor, denosumab, in patients with multiple myeloma or bone metastases from breast cancer. Clin Cancer Res 12:1221–1228PubMedCrossRefGoogle Scholar
  85. 85.
    Stopeck AT, Lipton A, Body JJ et al (2010) Denosumab compared with zoledronic acid for the treatment of bone metastases in patients with advanced breast cancer: a randomized, double-blind study. J Clin Oncol 28:5132–5139PubMedCrossRefGoogle Scholar
  86. 86.
    Cleeland CS, Body JJ, Stopeck A et al (2013) Pain outcomes in patients with advanced breast cancer and bone metastases: results from a randomized, double-blind study of denosumab and zoledronic acid. Cancer 119:832–838PubMedCrossRefGoogle Scholar
  87. 87.
    Martin M, Bell R, Bourgeois H et al (2012) Bone-related complications and quality of life in advanced breast cancer: results from a randomized phase III trial of denosumab versus zoledronic acid. Clin Cancer Res 18:4841–4849PubMedCrossRefGoogle Scholar
  88. 88.
    Henry DH, Costa L, Goldwasser F et al (2011) Randomized, double-blind study of denosumab versus zoledronic acid in the treatment of bone metastases in patients with advanced cancer (excluding breast and prostate cancer) or multiple myeloma. J Clin Oncol 29:1125–1132PubMedCrossRefGoogle Scholar
  89. 89.
    Fizazi K, Carducci M, Smith M et al (2011) Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a randomised, double-blind study. Lancet 377:813–822PubMedCentralPubMedCrossRefGoogle Scholar
  90. 90.
    Lipton A, Fizazi K, Stopeck AT et al (2012) Superiority of denosumab to zoledronic acid for prevention of skeletal-related events: a combined analysis of 3 pivotal, randomised, phase 3 trials. Eur J Cancer 48:3082–3092PubMedCrossRefGoogle Scholar
  91. 91.
    Chow E, Harris K, Fan G et al (2007) Palliative radiotherapy trials for bone metastases: a systematic review. J Clin Oncol 25:1423–1436PubMedCrossRefGoogle Scholar
  92. 92.
    Hoskin PJ, Stratford MR, Folkes LK et al (2000) Effect of local radiotherapy for bone pain on urinary markers of osteoclast activity. Lancet 355:1428–1429PubMedCrossRefGoogle Scholar
  93. 93.
    Tong D, Gillick L, Hendrickson FR (1982) The palliation of symptomatic osseous metastases: final results of the Study by the Radiation Therapy Oncology Group. Cancer 50:893–899PubMedCrossRefGoogle Scholar
  94. 94.
    Beyzadeoglu M, Ozyigit G, Ebruli C (2010) Basic radiation oncology. Springer, HeidelbergCrossRefGoogle Scholar
  95. 95.
    Hirokawa Y, Wadasaki K, Kashiwado K et al (1988) A multi-institutional prospective randomized study of radiation therapy of bone metastases. Nihon Igaku Hōshasen Gakkai Zasshi 48:1425–1431PubMedGoogle Scholar
  96. 96.
    Rasmusson B, Vejborg I, Jensen AB et al (1995) Irradiation of bone metastases in breast cancer patients: a randomized study with 1 year follow-up. Radiother Oncol 34:179–184PubMedCrossRefGoogle Scholar
  97. 97.
    Niewald M, Tkocz HJ, Abel U et al (1996) Rapid course radiation therapy vs. more standard treatment: a randomized trial for bone metastases. Int J Radiat Oncol Biol Phys 36:1085–1089PubMedCrossRefGoogle Scholar
  98. 98.
    Gaze MN, Kelly CG, Kerr GR et al (1997) Pain relief and quality of life following radiotherapy for bone metastases: a randomised trial of two fractionation schedules. Radiother Oncol 45:109–116PubMedCrossRefGoogle Scholar
  99. 99.
    Nielsen OS, Bentzen SM, Sandberg E et al (1998) Randomized trial of single dose versus fractionated palliative radiotherapy of bone metastases. Radiother Oncol 47:233–240PubMedCrossRefGoogle Scholar
  100. 100.
    Steenland E, Leer JW, van Houwelingen H et al (1999) The effect of a single fraction compared to multiple fractions on painful bone metastases: a global analysis of the Dutch bone metastasis study. Radiother Oncol 52:101–109PubMedCrossRefGoogle Scholar
  101. 101.
    Yarnold JR (1999) 8 Gy single fraction radiotherapy for the treatment of metastatic skeletal pain: randomised comparison with a multifraction schedule over 12 months of patient follow-up. Bone pain trial working party. Radiother Oncol 52:111–121CrossRefGoogle Scholar
  102. 102.
    Hartsell WF, Scott CB, Bruner DW et al (2005) Randomized trial of short- versus long-course radiotherapy for palliation of painful bone metastases. J Natl Cancer Inst 97:798–804PubMedCrossRefGoogle Scholar
  103. 103.
    Kaasa S, Brenne E, Lund JA et al (2006) Prospective randomised multicenter trial on single fraction radiotherapy (8 Gy × 1) versus multiple fractions (3 Gy × 10) in the treatment of painful bone metastases. Radiother Oncol 79:278–284PubMedCrossRefGoogle Scholar
  104. 104.
    Sande TA, Ruenes R, Lund JA et al (2009) Long-term follow-up of cancer patients receiving radiotherapy for bone metastases: results from a randomized multicentre trial. Radiother Oncol 91:261–266PubMedCrossRefGoogle Scholar
  105. 105.
    Popovic M, den Hartogh M, Zhang L et al (2014) Review of international patterns of practice for the treatment of painful bone metastases with palliative radiotherapy from 1993 to 2013. Radiother Oncol 111:11–17PubMedCrossRefGoogle Scholar
  106. 106.
    Roos DE, Turner SL, O’Brien PC et al (2005) Randomized trial of 8 Gy in 1 versus 20 Gy in 5 fractions of radiotherapy for neuropathic pain due to bone metastases (Trans-Tasman Radiation Oncology Group, TROG 96.05). Radiother Oncol 75:54–63PubMedCrossRefGoogle Scholar
  107. 107.
    Yamada Y, Bilsky MH, Lovelock DM et al (2008) High-dose, single-fraction image-guided intensity-modulated radiotherapy for metastatic spinal lesions. Int J Radiat Oncol Biol Phys 71:484–490PubMedCrossRefGoogle Scholar
  108. 108.
    Sohn S, Chung CK (2012) The role of stereotactic radiosurgery in metastasis to the spine. J Korean Neurosurg Soc 51:1–7PubMedCentralPubMedCrossRefGoogle Scholar
  109. 109.
    Chow E, van der Linden YM, Roos D et al (2014) Single versus multiple fractions of repeat radiation for painful bone metastases: a randomised, controlled, non-inferiority trial. Lancet Oncol 15:164–171PubMedCrossRefGoogle Scholar
  110. 110.
    Chow E, Zeng L, Salvo N et al (2012) Update on the systematic review of palliative radiotherapy trials for bone metastases. Clin Oncol (R Coll Radiol) 24:112–124CrossRefGoogle Scholar
  111. 111.
    Hayashi S, Hoshi H, Iida T (2002) Reirradiation with local-field radiotherapy for painful bone metastases. Radiat Med 20:231–236PubMedGoogle Scholar
  112. 112.
    Jeremic B, Shibamoto Y, Igrutinovic I (1999) Single 4 Gy re-irradiation for painful bone metastasis following single fraction radiotherapy. Radiother Oncol 52:123–127PubMedCrossRefGoogle Scholar
  113. 113.
    Briasoulis E, Karavasilis V, Kostadima L et al (2004) Metastatic breast carcinoma confined to bone: portrait of a clinical entity. Cancer 101:1524–1528PubMedCrossRefGoogle Scholar
  114. 114.
    Gokaslan ZL (1996) Spine surgery for cancer. Curr Opin Oncol 8:178–181PubMedCrossRefGoogle Scholar
  115. 115.
    Ju DG, Yurter A, Gokaslan ZL, Sciubba DM (2014) Diagnosis and surgical management of breast cancer metastatic to the spine. World J Clin Oncol 5:263–271PubMedCentralPubMedCrossRefGoogle Scholar
  116. 116.
    Shehadi JA, Sciubba DM, Suk I et al (2007) Surgical treatment strategies and outcome in patients with breast cancer metastatic to the spine: a review of 87 patients. Eur Spine J 16:1179–1192PubMedCentralPubMedCrossRefGoogle Scholar
  117. 117.
    Tancioni F, Navarria P, Mancosu P et al (2011) Surgery followed by radiotherapy for the treatment of metastatic epidural spinal cord compression from breast cancer. Spine (Phila Pa 1976) 36:E1352–E1359CrossRefGoogle Scholar
  118. 118.
    Patchell RA, Tibbs PA, Regine WF et al (2005) Direct decompressive surgical resection in the treatment of spinal cord compression caused by metastatic cancer: a randomised trial. Lancet 366:643–648PubMedCrossRefGoogle Scholar
  119. 119.
    Laufer I, Sciubba DM, Madera M et al (2012) Surgical management of metastatic spinal tumors. Cancer Control 19:122–128PubMedGoogle Scholar
  120. 120.
    Sciubba DM, Petteys RJ, Dekutoski MB et al (2010) Diagnosis and management of metastatic spine disease. A review. J Neurosurg Spine 13:94–108PubMedCrossRefGoogle Scholar
  121. 121.
    Kakhki VR, Anvari K, Sadeghi R et al (2013) Pattern and distribution of bone metastases in common malignant tumors. Nucl Med Rev Cent East Eur 16:66–69PubMedCrossRefGoogle Scholar
  122. 122.
    Rosenberg M, Castagno A, Nadal J et al (2011) Sternal metastasis of breast cancer: ex vivo hypothermia and reimplantation. Ann Thorac Surg 91:584–586PubMedCrossRefGoogle Scholar
  123. 123.
    Kang HJ, Lee SA, Park KS et al (2012) Simultaneous chest wall reconstruction after sternectomy and modified radical mastectomy in locally advanced breast cancer with solitary sternal metastasis. J Breast Cancer 15:462–467PubMedCentralPubMedCrossRefGoogle Scholar
  124. 124.
    Demondion P, Mercier O, Kolb F, Fadel E (2014) Sternal replacement with a custom-made titanium plate after resection of a solitary breast cancer metastasis. Interact CardioVasc Thorac Surg 18:145–147PubMedCentralPubMedCrossRefGoogle Scholar
  125. 125.
    Daliakopoulos SI, Klimatsidas MN, Korfer R (2010) Solitary metastatic adenocarcinoma of the sternum treated by total sternectomy and chest wall reconstruction using a Gore-Tex patch and myocutaneous flap: a case report. J Med Case Rep 4:75PubMedCentralPubMedCrossRefGoogle Scholar
  126. 126.
    Dell’amore A, Nizar A, Dolci G et al (2013) Sternal resection and reconstruction for local recurrence of breast cancer using the sternal allograft transplantation technique. Heart Lung Circ 22:234–238PubMedCrossRefGoogle Scholar
  127. 127.
    Lequaglie C, Massone PB, Giudice G, Conti B (2002) Gold standard for sternectomies and plastic reconstructions after resections for primary or secondary sternal neoplasms. Ann Surg Oncol 9:472–479PubMedCrossRefGoogle Scholar
  128. 128.
    Brower ST, Weinberg H, Tartter PI, Camunes J (1992) Chest wall resection for locally recurrent breast cancer: indications, techniques and results. J Surg Oncol 4:189–195CrossRefGoogle Scholar
  129. 129.
    Kwai AH, Stomper PC, Kaplan WD (1988) Clinical significance of isolated scintigraphic sternal lesions in patients with breast cancer. J Nucl Med 4:324–328Google Scholar
  130. 130.
    Early Breast Cancer Trialists’ Collaborative Group (EBCTCG) (2015) Adjuvant bisphosphonate treatment in early breast cancer: meta-analyses of individual patient data from randomised trials. LancetGoogle Scholar
  131. 131.
    Coleman RE, Winter MC, Cameron D et al (2010) The effects of adding zoledronic acid to neoadjuvant chemotherapy on tumour response: exploratory evidence for direct anti-tumour activity in breast cancer. Br J Cancer 102:1099–1105PubMedCentralPubMedCrossRefGoogle Scholar
  132. 132.
    Fasching PA, Jud SM, Hauschild M et al (2014) FemZone trial: a randomized phase II trial comparing neoadjuvant letrozole and zoledronic acid with letrozole in primary breast cancer patients. BMC Cancer 14:66PubMedCentralPubMedCrossRefGoogle Scholar
  133. 133.
    Charehbili A, van de Ven S, Smit VT et al (2014) Addition of zoledronic acid to neoadjuvant chemotherapy does not enhance tumor response in patients with HER2-negative stage II/III breast cancer: the NEOZOTAC trial (BOOG 2010-01). Ann Oncol 5:998–1004CrossRefGoogle Scholar
  134. 134.
    Ottewell PD, Wang N, Brown HK et al (2014) Zoledronic acid has differential antitumor activity in the pre- and postmenopausal bone microenvironment in vivo. Clin Cancer Res 20:2922–2932PubMedCentralPubMedCrossRefGoogle Scholar
  135. 135.
  136. 136.
    Takalkar A, Adams S, Subbiah V (2014) Radium-223 dichloride bone-targeted alpha particle therapy for hormone-refractory breast cancer metastatic to bone. Exp Hematol Oncol 3:23PubMedCentralPubMedCrossRefGoogle Scholar
  137. 137.
    Suominen MI, Rissanen JP, Käkönen R et al (2013) Survival benefit with radium-223 dichloride in a mouse model of breast cancer bone metastasis. J Natl Cancer Inst 105:908–916PubMedCrossRefGoogle Scholar
  138. 138.
    Coleman R, Aksnes AK, Naume B et al (2014) A phase IIa, nonrandomized study of radium-223 dichloride in advanced breast cancer patients with bone-dominant disease. Breast Cancer Res Treat 145:411–418PubMedCentralPubMedCrossRefGoogle Scholar
  139. 139.
    Fizazi K, Lipton A, Mariette X et al (2009) Randomized phase II trial of denosumab in patients with bone metastases from prostate cancer, breast cancer, or other neoplasms after intravenous bisphosphonates. J Clin Oncol 27:1564–1571PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Caterina Fontanella
    • 1
    • 2
  • Valentina Fanotto
    • 1
    • 2
  • Karim Rihawi
    • 1
    • 2
  • Giuseppe Aprile
    • 1
  • Fabio Puglisi
    • 1
    • 2
  1. 1.Department of OncologyUniversity Hospital of UdineUdineItaly
  2. 2.Department of Medical and Biological SciencesUniversity of UdineUdineItaly

Personalised recommendations