Advertisement

Clinical & Experimental Metastasis

, Volume 32, Issue 7, pp 689–702 | Cite as

Human breast cancer bone metastasis in vitro and in vivo: a novel 3D model system for studies of tumour cell-bone cell interactions

  • I. Holen
  • F. Nutter
  • J. M. Wilkinson
  • C. A. Evans
  • P. Avgoustou
  • Penelope D. OttewellEmail author
Research Paper

Abstract

Bone is established as the preferred site of breast cancer metastasis. However, the precise mechanisms responsible for this preference remain unidentified. In order to improve outcome for patients with advanced breast cancer and skeletal involvement, we need to better understand how this process is initiated and regulated. As bone metastasis cannot be easily studied in patients, researchers have to date mainly relied on in vivo xenograft models. A major limitation of these is that they do not contain a human bone microenvironment, increasingly considered to be an important component of metastases. In order to address this shortcoming, we have developed a novel humanised bone model, where 1 × 105 luciferase-expressing MDA-MB-231 or T47D human breast tumour cells are seeded on viable human subchaodral bone discs in vitro. These discs contain functional osteoclasts 2-weeks after in vitro culture and positive staining for calcine 1-week after culture demonstrating active bone resorption/formation. In vitro inoculation of MDA-MB-231 or T47D cells colonised human bone cores and remained viable for <4 weeks, however, use of matrigel to enhance adhesion or a moving platform to increase diffusion of nutrients provided no additional advantage. Following colonisation by the tumour cells, bone discs pre-seeded with MDA-MB-231 cells were implanted subcutaneously into NOD SCID mice, and tumour growth monitored using in vivo imaging for up to 6 weeks. Tumour growth progressed in human bone discs in 80 % of the animals mimicking the later stages of human bone metastasis. Immunohistochemical and PCR analysis revealed that growing MDA-MB-231 cells in human bone resulted in these cells acquiring a molecular phenotype previously associated with breast cancer bone metastases. MDA-MB-231 cells grown in human bone discs showed increased expression of IL-1B, HRAS and MMP9 and decreased expression of S100A4, whereas, DKK2 and FN1 were unaltered compared with the same cells grown in mammary fat pads of mice not implanted with human bone discs.

Keywords

Breast cancer Bone Metastasis 3D models 

Notes

Acknowledgments

This study was supported by a project grant from Weston Park Hospital Cancer Charity, Sheffield, UK. The IVIS imaging system was provided by a grant from Yorkshire Cancer Research, UK. We thank Ms Sophia Sutherland and Dr. Fatma Gossiel for technical assistance and Dr. Paul Heath, University of Sheffield, for his help with genetic analysis. We gratefully acknowledge authorisation to perform the in vivo component of the study under Home Office Project License approval PPL 40/3531 holder Prof. NJ Brown, University of Sheffield, UK.

References

  1. 1.
    Major PP, Cook RJ, Lipton A, Smith MR, Terpos E, Coleman RE (2009) Natural history of malignant bone disease in breast cancer and the use of cumulative mean functions to measure skeletal morbidity. BMC Cancer 9:272CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Xia TS, Wang J, Yin H, Ding Q, Zhang YF, Yang HW, Liu XA, Dong M, Du Q, Ling LJ, Zha XM, Fu W, Wang S (2010) Human tissue-specific microenvironment: an essential requirement for mouse models of breast cancer. Oncol Rep 24(1):203–211PubMedGoogle Scholar
  3. 3.
    Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19(11):1423–1437CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Hanahan D, Coussens LM (2012) Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21(3):309–322CrossRefPubMedGoogle Scholar
  5. 5.
    Buenrostro D, Park SI, Sterling JA (2014) Dissecting the role of bone marrow stromal cells on bone metastases. Biomed Res Int 2014:875305. Epub 2014 Jun 26CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Esposito M, Kang Y (2014) Targeting tumor-stromal interactions in bone metastasis. Pharmacol Ther 141(2):222–233CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Cawthorn TR, Amir E, Broom R, Freedman O, Gianfelice D, Barth D, Wang D, Holen I, Done SJ, Clemons M (2009) Mechanisms and pathways of bone metastasis: challenges and pitfalls of performing molecular research on patient samples. Clin Exp Metastasis 26(8):935–943CrossRefPubMedGoogle Scholar
  8. 8.
    Rosol TJ, Tannehill-Gregg SH, Corn S, Schneider A, McCauley LK (2004) Animal models of bone metastasis. Cancer Treat Res 118:47–81CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Ottewell PD, Woodward JK, Lefley DV, Evans CA, Coleman RE, Holen I (2009) Anticancer mechanisms of doxorubicin and zoledronic acid in breast cancer tumor growth in bone. Mol Cancer Ther 8(10):2821–2832CrossRefPubMedGoogle Scholar
  10. 10.
    Ottewell PD, Wang N, Brown HK, Reeves KJ, Fowles CA, Croucher PI, Eaton CL, Holen I (2014) Zoledronic acid has differential antitumor activity in the pre- and postmenopausal bone microenvironment in vivo. Clin Cancer Res 20(11):2922–2932CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Brown HK, Ottewell PD, Evans CA, Holen I (2012) Location matters: osteoblast and osteoclast distribution is modified by the presence and proximity to breast cancer cells in vivo. Clin Exp Metastasis 29(8):927–938CrossRefPubMedGoogle Scholar
  12. 12.
    Coleman RE, Gregory W, Marshall H, Wilson C, Holen I (2013) The metastatic microenvironment of breast cancer: clinical implications. Breast 22:S50–S56CrossRefPubMedGoogle Scholar
  13. 13.
    Kuperwasser C, Dessain S, Bierbaum BE, Garnet D, Sperandio K, Gauvin GP, Naber SP, Weinberg RA, Rosenblatt M (2005) A mouse model of human breast cancer metastasis to human bone. Cancer Res 65(14):6130–6138CrossRefPubMedGoogle Scholar
  14. 14.
    Lam P, Yang W, Amemiya Y, Kahn H, Yee A, Holloway C, Seth A (2009) A human bone NOD SCID mouse model to distinguish metastatic potential in primary breast cancers. Cancer Biol Ther 8(11):1010–1017CrossRefPubMedGoogle Scholar
  15. 15.
    Holzapfel BM, Thibaudeau L, Hesami P, Taubenberger A, Holzapfel NP, Mayer-Wagner S, Power C, Clements J, Russell P, Hutmacher DW (2013) Humanised xenograft models of bone metastasis revisited: novel insights into species-specific mechanisms of cancer cell osteotropism. Cancer Metastasis Rev 32(1–2):129–145CrossRefPubMedGoogle Scholar
  16. 16.
    Xia TS, Wang GZ, Ding Q, Liu XA, Zhou WB, Zhang YF, Zha XM, Du Q, Ni XJ, Wang J, Miao SY, Wang S (2012) Bone metastasis in a novel breast cancer mouse model containing human breast and human bone. Breast Cancer Res Treat 132(2):471–486CrossRefPubMedGoogle Scholar
  17. 17.
    Nutter F, Wilkinson JM, Holen I, Ottewell PD (2013) Optomisation of a human specific model of breast cancer bone metastasis. In: 13th International Conference on Cancer-Induced Bone Disease. Florida, USA. BonekeyGoogle Scholar
  18. 18.
    Nutter F, Holen I, Brown HK, Cross SS, Evans CA, Walker M, Coleman RE, Westbrook JA, Selby PJ, Brown JE, Ottewell PD (2014) Different molecular profiles are associated with breast cancer cell homing compared with colonisation of bone: evidence using a novel bone-seeking cell line. Endocr Relat Cancer 21(2):327–341CrossRefPubMedGoogle Scholar
  19. 19.
    Müller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN, Barrera JL, Mohar A, Verástegui E, Zlotnik A (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410(6824):50–56CrossRefPubMedGoogle Scholar
  20. 20.
    Taichman RS, Cooper C, Keller ET, Pienta KJ, Taichman NS, McCauley LK (2002) Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res 62(6):1832–1837PubMedGoogle Scholar
  21. 21.
    Guise TA, Mohammad KS, Clines G, Stebbins EG, Wong DH, Higgins LS, Vessella R, Corey E, Padalecki S, Suva L, Chirgwin JM (2006) Basic mechanisms responsible for osteolytic and osteoblastic bone metastases. Clin Cancer Res 12(20 Pt 2):6213s–6216sCrossRefPubMedGoogle Scholar
  22. 22.
    Heneweer M, Muusse M, Dingemans M, de Jong PC, van den Berg M, Sanderson JT (2005) Co-culture of primary human mammary fibroblasts and MCF-7 cells as an in vitro breast cancer model. Toxicol Sci 83(2):257–263CrossRefPubMedGoogle Scholar
  23. 23.
    Arrigoni C, De Luca P, Gilardi M, Previdi S, Broggini M, Moretti M (2014) Direct but not indirect co-culture with osteogenically differentiated human bone marrow stromal cells increases RANKL/OPG ratio in human breast cancer cells generating bone metastases. Mol Cancer 13:238CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Pasanen I, Pietilä M, Lehtonen S, Lehtilahti E, Hakkarainen T, Blanco Sequeiros R, Lehenkari P, Kuvaja P (2014) Mesenchymal stromal cells from female donors enhance breast cancer cell proliferation in vitro. Oncology 88(4):214–225CrossRefPubMedGoogle Scholar
  25. 25.
    Liverani C, Mercatali L, Spadazzi C, La Manna F, De Vita A, Riva N, Calpona S, Ricci M, Bongiovanni A, Gunelli E, Zanoni M, Fabbri F, Zoli W, Amadori D, Ibrahim T (2014) CSF-1 blockade impairs breast cancer osteoclastogenic potential in co-culture systems. Bone 66:214–222CrossRefPubMedGoogle Scholar
  26. 26.
    Krawetz R, Wu YE, Rancourt DE, Matyas J (2009) Osteoblasts suppress high bone turnover caused by osteolytic breast cancer in-vitro. Exp Cell Res 315(14):2333–2342CrossRefPubMedGoogle Scholar
  27. 27.
    Chong Seow Khoon M (2015) Experimental models of bone metastasis: opportunities for the study of cancer dormancy. Adv Drug Deliv Rev. doi: 10.1016/j.addr.2014.12.007
  28. 28.
    Mastro AM, Vogler EA (2009) A three-dimensional osteogenic tissue model for the study of metastatic tumor cell interactions with bone. Cancer Res 69(10):4097–4100CrossRefPubMedGoogle Scholar
  29. 29.
    Krishnan V, Shuman LA, Sosnoski DM, Dhurjati R, Vogler EA, Mastro AM (2011) Dynamic interaction between breast cancer cells and osteoblastic tissue: comparison of two- and three-dimensional cultures. J Cell Physiol 226(8):2150–2158CrossRefPubMedGoogle Scholar
  30. 30.
    Marlow R, Honeth G, Lombardi S, Cariati M, Hessey S, Pipili A, Mariotti V, Buchupalli B, Foster K, Bonnet D, Grigoriadis A, Rameshwar P, Purushotham A, Tutt A, Dontu G (2013) A novel model of dormancy for bone metastatic breast cancer cells. Cancer Res 73(23):6886–6899CrossRefPubMedGoogle Scholar
  31. 31.
    Curtin P, Youm H, Salih E (2012) Three-dimensional cancer-bone metastasis model using ex vivo co-cultures of live calvarial bones and cancer cells. Biomaterials 33(4):1065–1078CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Mastro AM, Gay CV, Welch DR (2003) The skeleton as a unique environment for breast cancer cells. Clin Exp Metastasis 20(3):275–284CrossRefPubMedGoogle Scholar
  33. 33.
    Laigle-Donadey F, Taillibert S, Martin-Duverneuil N, Hildebrand J, Delattre JY (2005) Skull-base metastases. J Neurooncol 75(1):63–69CrossRefPubMedGoogle Scholar
  34. 34.
    Mitsuya K, Nakasu Y, Horiguchi S, Harada H, Nishimura T, Yuen S, Asakura K, Endo M (2011) Metastatic skull tumors: MRI features and a new conventional classification. J Neurooncol 104(1):239–245CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Laigle-Donadey F, Taillibert S, Martin-Duverneuil N, Hildebrand J, Delattre JY (2005) Skull-base metastases. J Neurooncol 75(1):63–69CrossRefPubMedGoogle Scholar
  36. 36.
    Greenberg HS, Deck MD, Vikram B, Chu FC, Posner JB (1981 May) Metastasis to the base of the skull: clinical findings in 43 patients. Neurology 31(5):530–537CrossRefPubMedGoogle Scholar
  37. 37.
    Stark AM, Eichmann T, Mehdorn HM (2003) Skull metastases: clinical features, differential diagnosis, and review of the literature. Surg Neurol 60(3):219–225CrossRefPubMedGoogle Scholar
  38. 38.
    Williams GR, Jones E, MD, Muss HB Treatment of metastatic breast cancer in women aged 65 years and older. Womens Health. http://www.medscape.org/viewarticle/766642
  39. 39.
    Ottewell PD, Wang N, Brown HK, Fowles CA, Croucher PI, Eaton CL, Holen I (2015) OPG-Fc inhibits ovariectomy-induced growth of disseminated breast cancer cells in bone. Int J Cancer. (Epub ahead of print)Google Scholar
  40. 40.
    Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C, Guise TA, Massague J (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3:537–549CrossRefPubMedGoogle Scholar
  41. 41.
    Bellahcene A, Bachelier R, Detry C, Lidereau R, Clezardin P, Castronovo V (2007) Transcriptome analysis reveals an osteoblast-like phenotype for human osteotropic breast cancer cells. Breast Cancer Res Treat 101:135–148CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • I. Holen
    • 1
  • F. Nutter
    • 1
  • J. M. Wilkinson
    • 2
  • C. A. Evans
    • 1
  • P. Avgoustou
    • 1
  • Penelope D. Ottewell
    • 1
    Email author
  1. 1.Academic Unit of Clinical Oncology, Department of Oncology, Mellanby Centre for Bone Research, Medical SchoolUniversity of SheffieldSheffieldUK
  2. 2.Department of Human Metabolism, Mellanby Centre for Bone Research, Medical SchoolUniversity of SheffieldSheffieldUK

Personalised recommendations