Clinical & Experimental Metastasis

, Volume 32, Issue 6, pp 579–591 | Cite as

Cadherin-11 regulates the metastasis of Ewing sarcoma cells to bone

  • Mihoko Hatano
  • Yoshihiro MatsumotoEmail author
  • Jun-ichi Fukushi
  • Tomoya Matsunobu
  • Makoto Endo
  • Seiji Okada
  • Kunio Iura
  • Satoshi Kamura
  • Toshifumi Fujiwara
  • Keiichiro Iida
  • Yuko Fujiwara
  • Akira Nabeshima
  • Nobuhiko Yokoyama
  • Suguru Fukushima
  • Yoshinao Oda
  • Yukihide Iwamoto
Research Paper


Ewing sarcoma (ES) is a small round-cell tumor of the bones and soft tissues. ES frequently causes distant metastases, particularly in the lung and bone, which worsens patient prognosis. Cadherin-11 (Cad-11) is an adhesion molecule that is highly expressed in osteoblasts. Its expression is associated with bone metastases in prostate and breast cancer patients, and is known to occur in ES. Here we investigated the effects of Cad-11 on bone metastases of ES. Human ES cell lines RD-ES, SK-ES-1, SK-N-MC, and TC-71 cells were transduced with lentivirus containing Cad-11 shRNA or control shRNA (ES/Cad-11 and ES/Ctr). RD-ES and TC-71 were infected with a lentivirus luciferase vector. Adhesion assays were performed using these cells and recombinant Cad-11-Fc chimera or mouse osteoblast cell line MC3T3-E1. Cell motility was investigated via wound-healing assay. Intracardiac injection of RD-ES/Cad-11 and RD-ES/Ctr was used to create a mouse model of experimental bone metastasis. The association between Cad-11 expression and bone metastases and clinical prognosis in ES patients was analyzed by immunohistochemistry. We found knockdown of Cad-11 in ES cells resulted in reduced attachment ability and cell motility. In a mouse model of metastasis, RD-ES/Cad-11 cells caused fewer metastases than RD-ES/Ctr cells. The expression of Cad-11 in ES patients was significantly related to bone metastases (P < 0.05, logistic regression) and poorer overall survival (P < 0.05, log-rank test). These findings may explain that Cad-11 in ES cells may be essential for cell adhesion and motility, and is a promising molecular target for patients with ES.


Ewing sarcoma Cadherin-11 Bone metastasis Osteoblasts Adhesion molecule Chemokinesis 



Ewing sarcoma






Standard deviation


Matrix metalloproteinase


Fluorescence activated cell sorting



We thank Dr. Junji Kishimoto for the helpful suggestions on statistics. This work was supported by a Grant-in-Aid for Scientific Research (25293325) from the Japan Society for the Promotion of Science (Y. Iwamoto), and a Grant-in-Aid for Clinical Research Evidence-Based Medicine and Cancer Research from the Ministry of Health, Labor and Welfare of Japan (Y. Iwamoto).

Compliance with ethical standards

Conflict of interest

No potential conflicts of interest were disclosed.

Supplementary material

10585_2015_9729_MOESM1_ESM.docx (24 kb)
Supplementary material 1 (DOCX 25 kb)
10585_2015_9729_MOESM2_ESM.pdf (7.5 mb)
Supplementary material 2 (PDF 7654 kb)
10585_2015_9729_MOESM3_ESM.pdf (15.2 mb)
Supplementary material 3 (PDF 15555 kb)
10585_2015_9729_MOESM4_ESM.pdf (4.7 mb)
Supplementary material 4 (PDF 4812 kb)
10585_2015_9729_MOESM5_ESM.pdf (7.8 mb)
Supplementary material 5 (PDF 8029 kb)
10585_2015_9729_MOESM6_ESM.pdf (2.8 mb)
Supplementary material 6 (PDF 2823 kb)
10585_2015_9729_MOESM7_ESM.pdf (12 mb)
Supplementary material 7 (PDF 12280 kb)
10585_2015_9729_MOESM8_ESM.pdf (90 kb)
Supplementary material 8 (PDF 90 kb)


  1. 1.
    Burchill SA (2003) Ewing’s sarcoma: diagnostic, prognostic, and therapeutic implications of molecular abnormalities. J Clin Pathol 56(2):96–102PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Iwamoto Y (2007) Diagnosis and treatment of Ewing’s sarcoma. Jpn J Clin Oncol 37(2):79–89PubMedCrossRefGoogle Scholar
  3. 3.
    Miser JS, Goldsby RE, Chen Z et al (2007) Treatment of metastatic Ewing sarcoma/primitive neuroectodermal tumor of bone: evaluation of increasing the dose intensity of chemotherapy—a report from the Children’s Oncology Group. Pediatr Blood Cancer 49(7):894–900PubMedCrossRefGoogle Scholar
  4. 4.
    Bernstein ML, Devidas M, Lafreniere D et al (2006) Intensive therapy with growth factor support for patients with Ewing tumor metastatic at diagnosis: Pediatric Oncology Group/Children’s Cancer Group Phase II Study 9457—a report from the Children’s Oncology Group. J Clin Oncol 24(1):152–159PubMedCrossRefGoogle Scholar
  5. 5.
    Pinkerton CR, Bataillard A, Guillo S et al (2001) Treatment strategies for metastatic Ewing’s sarcoma. Eur J Cancer 37(11):1338–1344PubMedCrossRefGoogle Scholar
  6. 6.
    Nguyen DX, Bos PD, Massague J (2009) Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 9(4):274–284PubMedCrossRefGoogle Scholar
  7. 7.
    Sahai E (2007) Illuminating the metastatic process. Nat Rev Cancer 7(10):737–749PubMedCrossRefGoogle Scholar
  8. 8.
    Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3(6):453–458PubMedCrossRefGoogle Scholar
  9. 9.
    Tantivejkul K, Kalikin LM, Pienta KJ (2004) Dynamic process of prostate cancer metastasis to bone. J Cell Biochem 91(4):706–717PubMedCrossRefGoogle Scholar
  10. 10.
    Yoneda T, Hiraga T (2005) Crosstalk between cancer cells and bone microenvironment in bone metastasis. Biochem Biophys Res Commun 328(3):679–687PubMedCrossRefGoogle Scholar
  11. 11.
    Kamura S, Matsumoto Y, Fukushi JI et al (2010) Basic fibroblast growth factor in the bone microenvironment enhances cell motility and invasion of Ewing’s sarcoma family of tumours by activating the FGFR1-PI3K-Rac1 pathway. Br J Cancer 103(3):370–381PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Liotta LA, Kohn EC (2001) The microenvironment of the tumour-host interface. Nature 411(6835):375–379PubMedCrossRefGoogle Scholar
  13. 13.
    Joyce JA, Pollard JW (2009) Microenvironmental regulation of metastasis. Nat Rev Cancer 9(4):239–252PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Takeichi M (1987) Cellular and molecular basis for tissue construction: role of cadherins in selective cell adhesion. Seikagaku 59(1):1–9PubMedGoogle Scholar
  15. 15.
    Angst BD, Marcozzi C, Magee AI (2001) The cadherin superfamily: diversity in form and function. J Cell Sci 114(Pt 4):629–641PubMedGoogle Scholar
  16. 16.
    Mbalaviele G, Shin CS, Civitelli R (2006) Cell-cell adhesion and signaling through cadherins: connecting bone cells in their microenvironment. J Bone Miner Res 21(12):1821–1827PubMedCrossRefGoogle Scholar
  17. 17.
    Yagi T, Takeichi M (2000) Cadherin superfamily genes: functions, genomic organization, and neurologic diversity. Genes Dev 14(10):1169–1180PubMedGoogle Scholar
  18. 18.
    Okazaki M, Takeshita S, Kawai S et al (1994) Molecular cloning and characterization of OB-cadherin, a new member of cadherin family expressed in osteoblasts. J Biol Chem 269(16):12092–12098PubMedGoogle Scholar
  19. 19.
    Kawaguchi J, Kii I, Sugiyama Y et al (2001) The transition of cadherin expression in osteoblast differentiation from mesenchymal cells: consistent expression of cadherin-11 in osteoblast lineage. J Bone Miner Res 16(2):260–269PubMedCrossRefGoogle Scholar
  20. 20.
    Chu K, Cheng CJ, Ye X et al (2008) Cadherin-11 promotes the metastasis of prostate cancer cells to bone. Mol Cancer Res 6(8):1259–1267PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Huang CF, Lira C, Chu K et al (2010) Cadherin-11 increases migration and invasion of prostate cancer cells and enhances their interaction with osteoblasts. Cancer Res 70(11):4580–4589PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Tamura D, Hiraga T, Myoui A et al (2008) Cadherin-11-mediated interactions with bone marrow stromal/osteoblastic cells support selective colonization of breast cancer cells in bone. Int J Oncol 33(1):17–24PubMedGoogle Scholar
  23. 23.
    Zhang Y, Ma B, Fan Q (2010) Mechanisms of breast cancer bone metastasis. Cancer Lett 292(1):1–7PubMedCrossRefGoogle Scholar
  24. 24.
    Feltes CM, Kudo A, Blaschuk O et al (2002) An alternatively spliced cadherin-11 enhances human breast cancer cell invasion. Cancer Res 62(22):6688–6697PubMedGoogle Scholar
  25. 25.
    Chung LW (2003) Prostate carcinoma bone-stroma interaction and its biologic and therapeutic implications. Cancer 97(3 Suppl):772–778PubMedCrossRefGoogle Scholar
  26. 26.
    Logothetis CJ, Lin SH (2005) Osteoblasts in prostate cancer metastasis to bone. Nat Rev Cancer 5(1):21–28PubMedCrossRefGoogle Scholar
  27. 27.
    Guan H, Zhou Z, Gallick GE et al (2008) Targeting Lyn inhibits tumor growth and metastasis in Ewing’s sarcoma. Mol Cancer Ther 7(7):1807–1816PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Ohali A, Avigad S, Zaizov R et al (2004) Prediction of high risk Ewing’s sarcoma by gene expression profiling. Oncogene 23(55):8997–9006PubMedCrossRefGoogle Scholar
  29. 29.
    Iida K, Fukushi J, Matsumoto Y et al (2013) miR-125b develops chemoresistance in Ewing sarcoma/primitive neuroectodermal tumor. Cancer Cell Int 13(1):21-2867-13-21CrossRefGoogle Scholar
  30. 30.
    Fujiwara T, Fukushi J, Yamamoto S et al (2011) Macrophage infiltration predicts a poor prognosis for human ewing sarcoma. Am J Pathol 179(3):1157–1170PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Fujiwara-Okada Y, Matsumoto Y, Fukushi J et al (2013) Y-box binding protein-1 regulates cell proliferation and is associated with clinical outcomes of osteosarcoma. Br J Cancer 108(4):836–847PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Franzius C, Hotfilder M, Poremba C et al (2006) Successful high-resolution animal positron emission tomography of human Ewing tumours and their metastases in a murine xenograft model. Eur J Nucl Med Mol Imaging 33(12):1432–1441PubMedCrossRefGoogle Scholar
  33. 33.
    Kaur H, Phillips-Mason PJ, Burden-Gulley SM et al (2012) Cadherin-11, a marker of the mesenchymal phenotype, regulates glioblastoma cell migration and survival in vivo. Mol Cancer Res 10(3):293–304PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Schulte JD, Srikanth M, Das S et al (2013) Cadherin-11 regulates motility in normal cortical neural precursors and glioblastoma. PLoS One 8(8):e70962PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Satcher RL, Pan T, Cheng CJ et al (2014) Cadherin-11 in renal cell carcinoma bone metastasis. PLoS One 9(2):e89880PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Takeichi M (1993) Cadherins in cancer: implications for invasion and metastasis. Curr Opin Cell Biol 5(5):806–811PubMedCrossRefGoogle Scholar
  37. 37.
    Berx G, van Roy F (2009) Involvement of members of the cadherin superfamily in cancer. Cold Spring Harb Perspect Biol 1(6):a003129PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Tomita K, van Bokhoven A, van Leenders GJ et al (2000) Cadherin switching in human prostate cancer progression. Cancer Res 60(13):3650–3654PubMedGoogle Scholar
  39. 39.
    Sarrio D, Rodriguez-Pinilla SM, Hardisson D et al (2008) Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res 68(4):989–997PubMedCrossRefGoogle Scholar
  40. 40.
    Pishvaian MJ, Feltes CM, Thompson P et al (1999) Cadherin-11 is expressed in invasive breast cancer cell lines. Cancer Res 59(4):947–952PubMedGoogle Scholar
  41. 41.
    Lee YC, Cheng CJ, Huang M et al (2010) Androgen depletion up-regulates cadherin-11 expression in prostate cancer. J Pathol 221(1):68–76PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Cheng SL, Lecanda F, Davidson MK et al (1998) Human osteoblasts express a repertoire of cadherins, which are critical for BMP-2-induced osteogenic differentiation. J Bone Miner Res 13(4):633–644PubMedCrossRefGoogle Scholar
  43. 43.
    Lee YC, Bilen MA, Yu G et al (2013) Inhibition of cell adhesion by a cadherin-11 antibody thwarts bone metastasis. Mol Cancer Res 11(11):1401–1411PubMedCrossRefGoogle Scholar
  44. 44.
    Lee DM, Kiener HP, Agarwal SK et al (2007) Cadherin-11 in synovial lining formation and pathology in arthritis. Science 315(5814):1006–1010PubMedCrossRefGoogle Scholar
  45. 45.
    Warde N (2011) Inflammation: Cadherin 11: a key mediator of fibroblast inflammation. Nat Rev Rheumatol 7(7):374PubMedCrossRefGoogle Scholar
  46. 46.
    Li Y, Guo Z, Chen H et al (2011) HOXC8-dependent cadherin 11 expression facilitates breast cancer cell migration through Trio and Rac. Genes Cancer 2(9):880–888PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Kashef J, Kohler A, Kuriyama S et al (2009) Cadherin-11 regulates protrusive activity in Xenopus cranial neural crest cells upstream of Trio and the small GTPases. Genes Dev 23(12):1393–1398PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Adamowicz M, Radlwimmer B, Rieker RJ et al (2006) Frequent amplifications and abundant expression of TRIO, NKD2, and IRX2 in soft tissue sarcomas. Genes Chromosomes Cancer 45(9):829–838PubMedCrossRefGoogle Scholar
  49. 49.
    von Levetzow C, Jiang X, Gwye Y et al (2011) Modeling initiation of Ewing sarcoma in human neural crest cells. PLoS One 6(4):e19305CrossRefGoogle Scholar
  50. 50.
    Deng Z, Niu G, Cai L et al (2013) The prognostic significance of CD44V6, CDH11, and beta-catenin expression in patients with osteosarcoma. Biomed Res Int 2013:496193PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Mihoko Hatano
    • 1
  • Yoshihiro Matsumoto
    • 1
    Email author
  • Jun-ichi Fukushi
    • 1
  • Tomoya Matsunobu
    • 1
  • Makoto Endo
    • 1
  • Seiji Okada
    • 1
    • 2
  • Kunio Iura
    • 3
  • Satoshi Kamura
    • 1
  • Toshifumi Fujiwara
    • 1
  • Keiichiro Iida
    • 1
  • Yuko Fujiwara
    • 1
  • Akira Nabeshima
    • 1
  • Nobuhiko Yokoyama
    • 1
  • Suguru Fukushima
    • 1
  • Yoshinao Oda
    • 3
  • Yukihide Iwamoto
    • 1
  1. 1.Department of Orthopaedic Surgery, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
  2. 2.Department of Advanced Medical Initiatives, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
  3. 3.Department of Anatomic Pathology, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan

Personalised recommendations