Clinical & Experimental Metastasis

, Volume 32, Issue 6, pp 555–566 | Cite as

Targeting geranylgeranylation reduces adrenal gland tumor burden in a murine model of prostate cancer metastasis

  • Jacqueline E. Reilly
  • Jeffrey D. Neighbors
  • Huaxiang Tong
  • Michael D. Henry
  • Raymond J. Hohl
Research Paper


The isoprenoid biosynthetic pathway (IBP) is critical for providing substrates for the post-translational modification of proteins key in regulating malignant cell properties, including proliferation, invasion, and migration. Inhibitors of the IBP, including statins and nitrogenous bisphosphonates, are used clinically for the treatment of hypercholesterolemia and bone disease respectively. The statins work predominantly in the liver, while the nitrogenous bisphosphonates are highly sequestered to bone. Inhibition of the entire IBP is limited by organ specificity and side effects resulting from depletion of all isoprenoids. We have developed a novel compound, disodium [(6Z,11E,15E)-9-[bis(sodiooxy)phosphoryl]-17-hydroxy-2,6,12,16-tetramethyheptadeca-2,6,11,15-tetraen-9-yl]phosphonate (GGOHBP), which selectively targets geranylgeranyl diphosphate synthase, reducing post-translational protein geranylgeranylation. Intracardiac injection of luciferase-expressing human-derived 22Rv1 PCa cells into SCID mice resulted in tumor development in bone (100 %), adrenal glands (72 %), mesentery (22 %), liver (17 %), and the thoracic cavity (6 %). Three weeks after tumor inoculation, daily subcutaneous (SQ) injections of 1.5 mg/kg GGOHBP or the vehicle were given for one month. Dissected tumors revealed a reduction in adrenal gland tumors corresponding to a 54 % (P < 0.005) reduction in total adrenal gland tumor weight of the treated mice as compared to vehicle-treated controls. Western blot analysis of the harvested tissues showed a reduction in Rap1A geranylgeranylation in adrenal glands and mesenteric tumors of the treated mice while non-tumorous tissues and control mice showed no Rap1A alteration. Our findings detail a novel bisphosphonate compound capable of preferentially altering the IBP in tumor-burdened adrenal glands of a murine model of PCa metastasis.


Prostate cancer Metastasis Adrenal tumor Geranylgeranyl pyrophosphate Posttranslational modification Isoprenoid Bisphosphonate 



We would like to thank Nadine Bannick for her support in utilizing the bioluminescence imager and James E Dunford for graciously providing the GGDPS enzyme. This project was supported in part by the Roy J. Carver Charitable Trust, the Roland W. Holden Family Program for Experimental Therapeutics.


  1. 1.
    Holstein SA, Hohl RJ (2004) Isoprenoids: remarkable diversity of form and function. Lipids 39(4):293–309PubMedCrossRefGoogle Scholar
  2. 2.
    LaRosa JC, He J, Vupputuri S (1999) Effect of statins on risk of coronary disease - A meta-analysis of randomized controlled trials. Jama J Am Med Assoc 282(24):2340–2346CrossRefGoogle Scholar
  3. 3.
    Saad F, Lipton A (2007) Clinical benefits and considerations of bisphosphonate treatment in metastatic bone disease. Semin Oncol 34(6):S17–S23PubMedCrossRefGoogle Scholar
  4. 4.
    Brown JE et al (2005) Bone turnover markers as predictors of skeletal complications in prostate cancer, lung cancer, and other solid tumors. J Natl Cancer Inst 97(1):59–69PubMedCrossRefGoogle Scholar
  5. 5.
    Russell RGG, Rogers MJ (1999) Bisphosphonates: from the laboratory to the clinic and back again. Bone 25(1):97–106PubMedCrossRefGoogle Scholar
  6. 6.
    van Beek E et al (1999) Farnesyl pyrophosphate synthase is the molecular target of nitrogen-containing bisphosphonates. Biochem Biophys Res Commun 264(1):108–111PubMedCrossRefGoogle Scholar
  7. 7.
    Bergstrom JD et al (2000) Alendronate is a specific, nanomolar inhibitor of farnesyl diphosphate synthase. Arch Biochem Biophys 373(1):231–241PubMedCrossRefGoogle Scholar
  8. 8.
    Maltese WA (1990) Posttranslational modification of proteins by isoprenoids in mammalian-cells. Faseb J 4(15):3319–3328PubMedGoogle Scholar
  9. 9.
    Clarke S (1992) Protein isoprenylation and methylation at carboxyl-terminal cysteine residues. Annu Rev Biochem 61:355–386PubMedCrossRefGoogle Scholar
  10. 10.
    Coxon FP et al (2000) Protein geranylgeranylation is required for osteoclast formation, function, and survival: inhibition by bisphosphonates and GGTI-298. J Bone Miner Res 15(8):1467–1476PubMedCrossRefGoogle Scholar
  11. 11.
    Coxon FP, Rogers MJ (2003) The role of prenylated small GTP-binding proteins in the regulation of osteoclast function. Calcif Tissue Int 72(1):80–84PubMedCrossRefGoogle Scholar
  12. 12.
    Luckman SP et al (1998) Nitrogen-containing bisphosphonates inhibit the mevalonate pathway and prevent post-translational prenylation of GTP-binding proteins, including Ras. J Bone Miner Res 13(4):581–589PubMedCrossRefGoogle Scholar
  13. 13.
    O’Brien LE et al (2001) Rac1 orientates epithelial apical polarity through effects on basolateral laminin assembly. Nat Cell Biol 3(9):831–838PubMedCrossRefGoogle Scholar
  14. 14.
    Quinlan MP (1999) Rac regulates the stability of the adherens junction and its components, thus affecting epithelial cell differentiation and transformation. Oncogene 18(47):6434–6442PubMedCrossRefGoogle Scholar
  15. 15.
    Braga VMM et al (2000) Activation of the small GTPase Rac is sufficient to disrupt cadherin-dependent cell-cell adhesion in normal human keratinocytes. Mol Biol Cell 11(11):3703–3721PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Braga VMM et al (1997) The small GTPases rho and rac are required for the establishment of cadherin-dependent cell-cell contacts. J Cell Biol 137(6):1421–1431PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Zondag GCM et al (2000) Oncogenic Ras downregulates Rac activity, which leads to increased Rho activity and epithelial-mesenchymal transition. J Cell Biol 149(4):775–781PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Worthylake RA et al (2001) RhoA is required for monocyte tail retraction during transendothelial migration. J Cell Biol 154(1):147–160PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Matsumoto Y et al (2001) Small GTP-binding protein, Rho, both increased and decreased cellular motility, activation of matrix metalloproteinase 2 and invasion of human osteosarcoma cells. Jpn J Cancer Res 92(4):429–438PubMedCrossRefGoogle Scholar
  20. 20.
    Adamson P et al (1999) Lymphocyte migration through brain endothelial cell monolayers involves signaling through endothelial ICAM-1 via a Rho-dependent pathway. J Immunol 162(5):2964–2973PubMedGoogle Scholar
  21. 21.
    Clark EA et al (2000) Genomic analysis of metastasis reveals an essential role for RhoC. Nature 406(6795):532–535PubMedCrossRefGoogle Scholar
  22. 22.
    Platz EA (2009) Does statin use affect the risk of developing prostate cancer? Nat Clin Pract Urol 6(2):70–71PubMedCrossRefGoogle Scholar
  23. 23.
    Hamilton RJ et al (2010) Statin medication use and the risk of biochemical recurrence after radical prostatectomy results from the Shared Equal Access Regional Cancer Hospital (SEARCH) Database. Cancer 116(14):3389–3398PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Nielsen SF, Nordestgaard BG, Bojesen SE (2012) Statin use and reduced cancer-related mortality. N Engl J Med 367(19):1792–1802PubMedCrossRefGoogle Scholar
  25. 25.
    Murtola TJ et al (2007) Cholesterol-lowering drugs and prostate cancer risk: a population-based case-control study. Cancer Epidemiol Biomark Prevent 16(11):2226–2232CrossRefGoogle Scholar
  26. 26.
    Murtola TJ et al (2008) Statins and prostate cancer prevention: where we are now, and future directions. Nat Clin Pract Urol 5(7):376–387PubMedCrossRefGoogle Scholar
  27. 27.
    Lustman A et al (2014) Statin use and incident prostate cancer risk: does the statin brand matter? A population-based cohort study. Prostate Cancer Prostatic Dis 17(1):6–9PubMedCrossRefGoogle Scholar
  28. 28.
    Yu O et al (2014) Use of statins and the risk of death in patients with prostate cancer. J Clin Oncol 32(1):5 U77CrossRefGoogle Scholar
  29. 29.
    Corsini A et al (1999) New insights into the pharmacodynamic and pharmacokinetic properties of statins. Pharmacol Ther 84(3):413–428PubMedCrossRefGoogle Scholar
  30. 30.
    Reinoso RF et al (2002) Preclinical pharmacokinetics of statins. Methods Find Exp Clin Pharmacol 24(9):593–613PubMedGoogle Scholar
  31. 31.
    Sasaki A et al (1995) Bisphosphonate risedronate reduces metastatic human breast-cancer burden in bone in nude-mice. Cancer Res 55(16):3551–3557PubMedGoogle Scholar
  32. 32.
    Holstein SA, Hohl RJ (2011) Isoprenoid biosynthetic pathway inhibition disrupts monoclonal protein secretion and induces the unfolded protein response pathway in multiple myeloma cells. Leukemia Res 35(4):551–559CrossRefGoogle Scholar
  33. 33.
    Holstein SA, Tong HX, Hohl RJ (2010) Differential activities of thalidomide and isoprenoid biosynthetic pathway inhibitors in multiple myeloma cells. Leukemia Res 34(3):344–351CrossRefGoogle Scholar
  34. 34.
    Wasko BM, Dudakovic A, Hohl RJ (2011) Bisphosphonates induce autophagy by depleting geranylgeranyl diphosphate. J Pharmacol Exp Ther 337(2):540–546PubMedCrossRefGoogle Scholar
  35. 35.
    Wasko BM et al (2010) Identification and characterization of novel bisphosphonate inhibitors of squalene synthase. Faseb J 24:681Google Scholar
  36. 36.
    Weivoda MM, Hohl RJ (2011) The effects of direct inhibition of geranylgeranyl pyrophosphate synthase on osteoblast differentiation. J Cell Biochem 112(6):1506–1513PubMedCrossRefGoogle Scholar
  37. 37.
    Wiemer AJ, Hohl RJ, Wiemer DF (2009) The intermediate enzymes of isoprenoid metabolism as anticancer targets. Anti-Cancer Agents Med Chem 9(5):526–542CrossRefGoogle Scholar
  38. 38.
    Zhou X et al (2014) Synthesis of isoprenoid bisphosphonate ethers through C–P bond formations: potential inhibitors of geranylgeranyl diphosphate synthase. Beilstein J Org Chem 10:1645–1650PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Hohl RJ et al (1991) Inhibition of hydroxymethylglutaryl coenzyme A reductase activity induces a paradoxical increase in DNA synthesis in myeloid leukemia cells. Blood 77(5):1064–1070PubMedGoogle Scholar
  40. 40.
    Hohl RJ, Lewis K (1995) Differential-effects of monoterpenes and lovastatin on ras processing. J Biol Chem 270(29):17508–17512PubMedCrossRefGoogle Scholar
  41. 41.
    Hohl RJ et al (1998) Stereochemistry-dependent inhibition of RAS farnesylation by farnesyl phosphonic acids. Lipids 33(1):39–46PubMedCrossRefGoogle Scholar
  42. 42.
    Hohl RJ, LewisTibesar K (1995) Targeting the isoprenoid pathway for antileukemia therapy in humans. Blood 86(10):3039Google Scholar
  43. 43.
    Hohl RJ et al (1996) Differential effects of isoprenoid phosphonic acids on RAS farnesylation and cholesterol synthesis. J Investig Med 44(7):A342Google Scholar
  44. 44.
    Hohl RJ et al (1996) Inhibition of RAS farnesylation by isoprenoid phosphonic acids. Clin Pharmacol Ther 59(2):PII39CrossRefGoogle Scholar
  45. 45.
    Weivoda MM, Hohl RJ (2012) Geranylgeranyl pyrophosphate stimulates PPAR gamma expression and adipogenesis through the inhibition of osteoblast differentiation. Bone 50(2):467–476PubMedCrossRefGoogle Scholar
  46. 46.
    Maalouf MA (2006) Synthesis of isoprenoids incorporating a fluorescent label and evaluation of their effect on the mevalonate pathway. Chemistry. University of Iowa, Iowa City, IAGoogle Scholar
  47. 47.
    Drake JM, Gabriel CL, Henry MD (2005) Assessing tumor growth and distribution in a model of prostate cancer metastasis using bioluminescence imaging. Clin Exp Metastasis 22(8):674–684PubMedCrossRefGoogle Scholar
  48. 48.
    Dunford JE et al (2001) Structure-activity relationships for inhibition of farnesyl diphosphate synthase in vitro nd inhibition of bone resorption in vivo by nitrogen-containing bisphosphonates. J Pharmacol Exp Ther 296(2):235–242PubMedGoogle Scholar
  49. 49.
    Tong H, Holstein SA, Hohl RJ (2005) Simultaneous determination of farnesyl and geranylgeranyl pyrophosphate levels in cultured cells. Anal Biochem 336(1):51–59PubMedCrossRefGoogle Scholar
  50. 50.
    Smith PK et al (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150(1):76–85PubMedCrossRefGoogle Scholar
  51. 51.
    Drake JM, Danke JR, Henry MD (2010) Bone-specific growth inhibition of prostate cancer metastasis by atrasentan. Cancer Biol Ther 9(8):607–614PubMedCrossRefGoogle Scholar
  52. 52.
    Ghosh PM et al (1999) Role of RhoA activation in the growth and morphology of a murine prostate tumor cell line. Oncogene 18(28):4120–4130PubMedCrossRefGoogle Scholar
  53. 53.
    Wakchoure S et al (2006) Bisphosphonates inhibit the growth of mesothelioma cells in vitro and in vivo. Clin Cancer Res 12(9):2862–2868PubMedCrossRefGoogle Scholar
  54. 54.
    Clezardin P (2011) Bisphosphonates’ antitumor activity: an unravelled side of a multifaceted drug class. Bone 48(1):71–79PubMedCrossRefGoogle Scholar
  55. 55.
    Fournier P et al (2002) Bisphosphonates inhibit angiogenesis in vitro and testosterone-stimulated vascular regrowth in the ventral prostate in castrated rats. Cancer Res 62(22):6538–6544PubMedGoogle Scholar
  56. 56.
    Giraudo E, Inoue M, Hanahan D (2004) An amino-bisphosphonate targets MMP-9-expressing macrophages and angiogenesis to impair cervical carcinogenesis. J Clin Investig 114(5):623–633PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Hiraga T et al (2004) Zoledronic acid inhibits visceral metastases in the 4T1/luc mouse breast cancer model. Clin Cancer Res 10(13):4559–4567PubMedCrossRefGoogle Scholar
  58. 58.
    Ory B et al (2005) Zoledronic acid suppresses lung metastases and prolongs overall survival of osteosarcoma-bearing mice. Cancer 104(11):2522–2529PubMedCrossRefGoogle Scholar
  59. 59.
    Tuomela JM et al (2008) Alendronate decreases orthotopic PC-3 prostate tumor growth and metastasis to prostate-draining lymph nodes in nude mice. BMC Cancer 8:81PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Yamagishi S et al (2004) Minodronate, a newly developed nitrogen-containing bisphosphonate, suppresses melanoma growth and improves survival in nude mice by blocking vascular endothelial growth factor signaling. Am J Pathol 165(6):1865–1874PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Virtanen SS et al (2002) Alendronate inhibits invasion of PC-3 prostate cancer cells by affecting the mevalonate pathway. Cancer Res 62(9):2708–2714PubMedGoogle Scholar
  62. 62.
    Bubendorf L et al (2000) Metastatic patterns of prostate cancer: an autopsy study of 1589 patients. Hum Pathol 31(5):578–583PubMedCrossRefGoogle Scholar
  63. 63.
    Gandaglia G et al (2014) Distribution of metastatic sites in patients with prostate cancer: a population-based analysis. Prostate 74(2):210–216PubMedCrossRefGoogle Scholar
  64. 64.
    Shah RB et al (2004) Androgen-independent prostate cancer is a heterogeneous group of diseases: lessons from a rapid autopsy program. Cancer Res 64(24):9209–9216PubMedCrossRefGoogle Scholar
  65. 65.
    Nancollas GH et al (2006) Novel insights into actions of bisphosphonates on bone: differences in interactions with hydroxyapatite. Bone 38(5):617–627PubMedCrossRefGoogle Scholar
  66. 66.
    Lyons LS et al (2008) Ligand-independent activation of androgen receptors by rho gtpase signaling in prostate cancer. Mol Endocrinol 22(3):597–608PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Knight-Krajewski S et al (2004) Deregulation of the Rho GTPase, Rac1, suppresses cyclin-dependent kinase inhibitor p21(CIP1) levels in androgen-independent human prostate cancer cells. Oncogene 23(32):5513–5522PubMedCrossRefGoogle Scholar
  68. 68.
    Lin K-T et al (2012) Vav3-Rac1 signaling regulates prostate cancer metastasis with elevated Vav3 expression correlating with prostate cancer progression and posttreatment recurrence. Cancer Res 72(12):3000–3009PubMedCrossRefGoogle Scholar
  69. 69.
    Qin J et al (2009) Upregulation of PIP3-dependent Rac exchanger 1 (P-Rex1) promotes prostate cancer metastasis. Oncogene 28(16):1853–1863PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Engers R et al (2007) Prognostic relevance of increased Rac GTPase expression in prostate carcinomas. Endocr Relat Cancer 14(2):245–256PubMedCrossRefGoogle Scholar
  71. 71.
    Russell DW (1992) Cholesterol-biosynthesis and metabolism. Cardiovasc Drugs Ther 6(2):103–110PubMedCrossRefGoogle Scholar
  72. 72.
    Schroepfer GJ (1982) Sterol biosynthesis. Annu Rev Biochem 51:555–585PubMedCrossRefGoogle Scholar
  73. 73.
    Murthy S, Tong H, Hohl RJ (2005) Regulation of fatty acid synthesis by farnesyl pyrophosphate. J Biol Chem 280(51):41793–41804PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Jacqueline E. Reilly
    • 1
  • Jeffrey D. Neighbors
    • 2
    • 6
  • Huaxiang Tong
    • 4
  • Michael D. Henry
    • 3
  • Raymond J. Hohl
    • 1
    • 4
    • 5
  1. 1.Department of PharmacologyUniversity of IowaIowa CityUSA
  2. 2.Department of ChemistryUniversity of IowaIowa CityUSA
  3. 3.Department of Molecular Physiology and Biophysics and Pathology and Holden Comprehensive Cancer CenterUniversity of IowaIowa CityUSA
  4. 4.Department of Internal MedicineUniversity of IowaIowa CityUSA
  5. 5.Departments of Medicine and PharmacologyPennsylvania State University Hershey Cancer InstituteHersheyUSA
  6. 6.Department of PharmacologyThe Pennsylvania State University College of MedicineHersheyUSA

Personalised recommendations