Clinical & Experimental Metastasis

, Volume 32, Issue 6, pp 555–566

Targeting geranylgeranylation reduces adrenal gland tumor burden in a murine model of prostate cancer metastasis

  • Jacqueline E. Reilly
  • Jeffrey D. Neighbors
  • Huaxiang Tong
  • Michael D. Henry
  • Raymond J. Hohl
Research Paper

DOI: 10.1007/s10585-015-9727-0

Cite this article as:
Reilly, J.E., Neighbors, J.D., Tong, H. et al. Clin Exp Metastasis (2015) 32: 555. doi:10.1007/s10585-015-9727-0

Abstract

The isoprenoid biosynthetic pathway (IBP) is critical for providing substrates for the post-translational modification of proteins key in regulating malignant cell properties, including proliferation, invasion, and migration. Inhibitors of the IBP, including statins and nitrogenous bisphosphonates, are used clinically for the treatment of hypercholesterolemia and bone disease respectively. The statins work predominantly in the liver, while the nitrogenous bisphosphonates are highly sequestered to bone. Inhibition of the entire IBP is limited by organ specificity and side effects resulting from depletion of all isoprenoids. We have developed a novel compound, disodium [(6Z,11E,15E)-9-[bis(sodiooxy)phosphoryl]-17-hydroxy-2,6,12,16-tetramethyheptadeca-2,6,11,15-tetraen-9-yl]phosphonate (GGOHBP), which selectively targets geranylgeranyl diphosphate synthase, reducing post-translational protein geranylgeranylation. Intracardiac injection of luciferase-expressing human-derived 22Rv1 PCa cells into SCID mice resulted in tumor development in bone (100 %), adrenal glands (72 %), mesentery (22 %), liver (17 %), and the thoracic cavity (6 %). Three weeks after tumor inoculation, daily subcutaneous (SQ) injections of 1.5 mg/kg GGOHBP or the vehicle were given for one month. Dissected tumors revealed a reduction in adrenal gland tumors corresponding to a 54 % (P < 0.005) reduction in total adrenal gland tumor weight of the treated mice as compared to vehicle-treated controls. Western blot analysis of the harvested tissues showed a reduction in Rap1A geranylgeranylation in adrenal glands and mesenteric tumors of the treated mice while non-tumorous tissues and control mice showed no Rap1A alteration. Our findings detail a novel bisphosphonate compound capable of preferentially altering the IBP in tumor-burdened adrenal glands of a murine model of PCa metastasis.

Keywords

Prostate cancer Metastasis Adrenal tumor Geranylgeranyl pyrophosphate Posttranslational modification Isoprenoid Bisphosphonate 

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Jacqueline E. Reilly
    • 1
  • Jeffrey D. Neighbors
    • 2
    • 6
  • Huaxiang Tong
    • 4
  • Michael D. Henry
    • 3
  • Raymond J. Hohl
    • 1
    • 4
    • 5
  1. 1.Department of PharmacologyUniversity of IowaIowa CityUSA
  2. 2.Department of ChemistryUniversity of IowaIowa CityUSA
  3. 3.Department of Molecular Physiology and Biophysics and Pathology and Holden Comprehensive Cancer CenterUniversity of IowaIowa CityUSA
  4. 4.Department of Internal MedicineUniversity of IowaIowa CityUSA
  5. 5.Departments of Medicine and PharmacologyPennsylvania State University Hershey Cancer InstituteHersheyUSA
  6. 6.Department of PharmacologyThe Pennsylvania State University College of MedicineHersheyUSA

Personalised recommendations