Clinical & Experimental Metastasis

, Volume 32, Issue 5, pp 441–455 | Cite as

Transketolase is upregulated in metastatic peritoneal implants and promotes ovarian cancer cell proliferation

  • Carmela RicciardelliEmail author
  • Noor A. Lokman
  • Sowmya Cheruvu
  • Izza A. Tan
  • Miranda P. Ween
  • Carmen E. Pyragius
  • Andrew Ruszkiewicz
  • Peter Hoffmann
  • Martin K. Oehler


Ovarian cancer, the most lethal gynaecological cancer, is characterised by the shedding of epithelial cells from the ovarian surface, followed by metastasis and implantation onto the peritoneal surfaces of abdominal organs. Our proteomic studies investigating the interactions between peritoneal (LP-9) and ovarian cancer (OVCAR-5) cells found transketolase (TKT) to be regulated in the co-culture system. This study characterized TKT expression in advanced stage (III/IV) serous ovarian cancers (n = 125 primary and n = 54 peritoneal metastases), normal ovaries (n = 6) and benign serous cystadenomas (n = 10) by immunohistochemistry. In addition, we also evaluated the function of TKT in ovarian cancer cells in vitro. Nuclear TKT was present in all primary serous ovarian cancer tissues examined (median 82.0 %, range 16.5–100 %) and was significantly increased in peritoneal metastases compared with matching primary cancers (P = 0.01, Wilcoxon Rank test). Kaplan–Meier survival and Cox regression analyses showed that high nuclear TKT positivity in peritoneal metastases (>94 %) was significantly associated with reduced overall survival (P = 0.006) and a 2.8 fold increased risk of ovarian cancer death (95 % CI 1.29–5.90, P = 0.009). Knockdown of TKT by siRNAs significantly reduced SKOV-3 cell proliferation but had no effect on their motility or invasion. Oxythiamine, an inhibitor of TKT activity, significantly inhibited the proliferation of four ovarian cancer cell lines (OV-90, SKOV-3, OVCAR-3 and OVCAR-5) and primary serous ovarian cancer cells isolated from patient ascites. In conclusion, these findings indicate that TKT plays an important role in the proliferation of metastatic ovarian cancer cells and could be used as novel therapeutic target for advanced disease.


Ovarian cancer Transketolase Glucose metabolism Pentose phosphate pathway Oxythiamine Invasion Motility Proliferation Metastasis 



Conditioned media


Fetal bovine serum


Phosphate pentose pathway




Thiamine diphosphate



We thank Dr. Thomas Hamilton (Fox Chase Cancer Center, Philadelphia, PA) for kindly providing the OVCAR-5 cell line, Mrs Wendy Bonner and Dr Noor Hammodi for their help with the TKT immunostaining. This research has been funded by the Ovarian Cancer Research Foundation (OCRF), Australia, Cancer Council of South Australia and South Australian Health and Medical Research Institute.

Conflict of interest

The authors declare they have no conflict of interest.

Supplementary material

10585_2015_9718_MOESM1_ESM.tif (3.8 mb)
Supplementary material 1 (TIFF 3891 kb). Supplementary Fig. 1: Cytokeratin immunocytochemical staining in primary serous ovarian cancer cells. Pan-cytokeratin immunostaining of primary ovarian cancer cells derived from patient 1 (a) and patient 2 (b) ascites compared with the established serous ovarian cancer cell line OV-90 (c). d Represents OV-90 cells negative control of immunocytochemistry without primary antibody. Magnification bar = 100 µm for all images
10585_2015_9718_MOESM2_ESM.tif (799 kb)
Supplementary material 2 (TIFF 798 kb). Supplementary Fig. 2: Ion-trap mass spectrometry LC–MS/MS analysis of spot 1 (a) and spot 2 (b) identified in the secretome of co-cultured OVCAR-5 and LP-9 cells by 2D gel electrophoresis and silver staining
10585_2015_9718_MOESM3_ESM.docx (16 kb)
Supplementary material 3 (DOCX 16 kb). Supplementary Table 1: Summary of clinical and pathological characteristics of the primary ovarian cancer cells established from patient ascites


  1. 1.
    Jemal A et al (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90PubMedCrossRefGoogle Scholar
  2. 2.
    Auersperg N et al (2001) Ovarian surface epithelium: biology, endocrinology, and pathology. Endocr Rev 22(2):255–288PubMedGoogle Scholar
  3. 3.
    Gardner MJ et al (1995) Expression of cell adhesion molecules on ovarian tumour cell lines and mesothelial cells, in relation to ovarian cancer metastasis. Cancer Lett 91(2):229–234PubMedCrossRefGoogle Scholar
  4. 4.
    Freedman RS et al (2004) Peritoneal inflammation—a microenvironment for epithelial ovarian cancer (EOC). J Transl Med 2(1):23PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Strobel T, Cannistra SA (1999) Beta1-integrins partly mediate binding of ovarian cancer cells to peritoneal mesothelium in vitro. Gynecol Oncol 73(3):362–367PubMedCrossRefGoogle Scholar
  6. 6.
    Ricciardelli C, Rodgers RJ (2006) Extracellular matrix of ovarian tumors. Semin Reprod Med 24(4):270–282PubMedCrossRefGoogle Scholar
  7. 7.
    Said NA et al (2007) SPARC inhibits LPA-mediated mesothelial-ovarian cancer cell crosstalk. Neoplasia 9(1):23–35PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Heyman L et al (2008) Vitronectin and its receptors partly mediate adhesion of ovarian cancer cells to peritoneal mesothelium in vitro. Tumour Biol 29(4):231–244PubMedCrossRefGoogle Scholar
  9. 9.
    Kenny HA et al (2008) The initial steps of ovarian cancer cell metastasis are mediated by MMP-2 cleavage of vitronectin and fibronectin. J Clin Investig 118(4):1367–1379PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Ween MP et al (2011) Transforming growth factor-beta-induced protein secreted by peritoneal cells increases the metastatic potential of ovarian cancer cells. Int J Cancer 128(7):1570–1584PubMedCrossRefGoogle Scholar
  11. 11.
    Lokman NA et al (2013) Annexin A2 is regulated by ovarian cancer-peritoneal cell interactions and promotes metastasis. Oncotarget 4(8):1199–1211PubMedCentralPubMedGoogle Scholar
  12. 12.
    Lindqvist Y et al (1992) Three-dimensional structure of transketolase, a thiamine diphosphate dependent enzyme, at 2.5 A resolution. EMBO J 11(7):2373–2379PubMedCentralPubMedGoogle Scholar
  13. 13.
    Zhao J, Zhong CJ (2009) A review on research progress of transketolase. Neurosci Bull 25(2):94–99PubMedCrossRefGoogle Scholar
  14. 14.
    Cascante M et al (2000) Role of thiamin (vitamin B-1) and transketolase in tumor cell proliferation. Nutr Cancer 36(2):150–154PubMedCrossRefGoogle Scholar
  15. 15.
    Blass JP, Gibson GE (1977) Abnormality of a thiamine-requiring enzyme in patients with Wernicke–Korsakoff syndrome. N Engl J Med 297(25):1367–1370PubMedCrossRefGoogle Scholar
  16. 16.
    Gibson GE et al (1988) Reduced activities of thiamine-dependent enzymes in the brains and peripheral tissues of patients with Alzheimer’s disease. Arch Neurol 45(8):836–840PubMedCrossRefGoogle Scholar
  17. 17.
    Boros LG et al (1997) Oxythiamine and dehydroepiandrosterone inhibit the nonoxidative synthesis of ribose and tumor cell proliferation. Cancer Res 57(19):4242–4248PubMedGoogle Scholar
  18. 18.
    Boros LG et al (2000) Transforming growth factor beta2 promotes glucose carbon incorporation into nucleic acid ribose through the nonoxidative pentose cycle in lung epithelial carcinoma cells. Cancer Res 60(5):1183–1185PubMedGoogle Scholar
  19. 19.
    Boros LG et al (1998) Inhibition of the oxidative and nonoxidative pentose phosphate pathways by somatostatin: a possible mechanism of antitumor action. Med Hypotheses 50(6):501–506PubMedCrossRefGoogle Scholar
  20. 20.
    Rais B et al (1999) Oxythiamine and dehydroepiandrosterone induce a G1 phase cycle arrest in Ehrlich’s tumor cells through inhibition of the pentose cycle. FEBS Lett 456(1):113–118PubMedCrossRefGoogle Scholar
  21. 21.
    Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4(11):891–899PubMedCrossRefGoogle Scholar
  22. 22.
    Seyfried TN, Shelton LM (2010) Cancer as a metabolic disease. Nutr Metab 7:7CrossRefGoogle Scholar
  23. 23.
    Warburg O (1956) On the origin of cancer cells. Science 123(3191):309–314PubMedCrossRefGoogle Scholar
  24. 24.
    Kelloff GJ et al (2005) Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development. Clin Cancer Res 11(8):2785–2808PubMedCrossRefGoogle Scholar
  25. 25.
    Kelloff GJ et al (2007) FDG-PET lymphoma demonstration project invitational workshop. Acad Radiol 14(3):330–339PubMedCrossRefGoogle Scholar
  26. 26.
    Lavayssiere R, Cabee AE, Filmont JE (2009) Positron emission tomography (PET) and breast cancer in clinical practice. Eur J Radiol 69(1):50–58PubMedCrossRefGoogle Scholar
  27. 27.
    Wittig R, Coy JF (2008) The role of glucose metabolism and glucose-associated signalling in cancer. Perspect Med Chem 1:64–82Google Scholar
  28. 28.
    Boren J et al (2002) Metabolic control analysis aimed at the ribose synthesis pathways of tumor cells: a new strategy for antitumor drug development. Mol Biol Rep 29(1–2):7–12PubMedCrossRefGoogle Scholar
  29. 29.
    Ramos-Montoya A et al (2006) Pentose phosphate cycle oxidative and nonoxidative balance: a new vulnerable target for overcoming drug resistance in cancer. Int J Cancer 119(12):2733–2741PubMedCrossRefGoogle Scholar
  30. 30.
    Langbein S et al (2006) Expression of transketolase TKTL1 predicts colon and urothelial cancer patient survival: warburg effect reinterpreted. Br J Cancer 94(4):578–585PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Coy JF et al (1996) Molecular cloning of tissue-specific transcripts of a transketolase-related gene: implications for the evolution of new vertebrate genes. Genomics 32(3):309–316PubMedCrossRefGoogle Scholar
  32. 32.
    Mitschke L et al (2010) The crystal structure of human transketolase and new insights into its mode of action. J Biol Chem 285(41):31559–31570PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Coy JF et al (2005) Mutations in the transketolase-like gene TKTL1: clinical implications for neurodegenerative diseases, diabetes and cancer. Clin Lab 51(5–6):257–273PubMedGoogle Scholar
  34. 34.
    Kochetov GA, Solovjeva ON (2014) Structure and functioning mechanism of transketolase. Biochim Biophys Acta 9(1844):1608–1618CrossRefGoogle Scholar
  35. 35.
    Staiger WI et al (2006) Expression of the mutated transketolase TKTL1, a molecular marker in gastric cancer. Oncol Rep 16(4):657–661PubMedGoogle Scholar
  36. 36.
    Foldi M et al (2007) Transketolase protein TKTL1 overexpression: a potential biomarker and therapeutic target in breast cancer. Oncol Rep 17(4):841–845PubMedGoogle Scholar
  37. 37.
    Zhang S et al (2007) Gene silencing of TKTL1 by RNAi inhibits cell proliferation in human hepatoma cells. Cancer Lett 253(1):108–114PubMedCrossRefGoogle Scholar
  38. 38.
    Volker HU et al (2007) Overexpression of transketolase TKTL1 is associated with shorter survival in laryngeal squamous cell carcinomas. Eur Arch Oto-Rhino-Laryngol 264(12):1431–1436CrossRefGoogle Scholar
  39. 39.
    Volker HU et al (2008) Expression of transketolase-like 1 and activation of Akt in grade IV glioblastomas compared with grades II and III astrocytic gliomas. Am J Clin Pathol 130(1):50–57PubMedCrossRefGoogle Scholar
  40. 40.
    Langbein S et al (2008) Metastasis is promoted by a bioenergetic switch: new targets for progressive renal cell cancer. Int J Cancer 122(11):2422–2428PubMedCrossRefGoogle Scholar
  41. 41.
    Zhang S et al (2008) Overexpression of transketolase protein TKTL1 is associated with occurrence and progression in nasopharyngeal carcinoma: a potential therapeutic target in nasopharyngeal carcinoma. Cancer Biol Ther 7(4):517–522PubMedCrossRefGoogle Scholar
  42. 42.
    Chen H et al (2009) Overexpression of transketolase-like gene 1 is associated with cell proliferation in uterine cervix cancer. J Exp Clin Cancer Res 28:43PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Kayser G et al (2011) Poor outcome in primary non-small cell lung cancers is predicted by transketolase TKTL1 expression. Pathology 43(7):719–724PubMedCrossRefGoogle Scholar
  44. 44.
    Grimm M et al (2013) A biomarker based detection and characterization of carcinomas exploiting two fundamental biophysical mechanisms in mammalian cells. BMC Cancer 13:569PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Grimm M et al (2014) GLUT-1(+)/TKTL1(+) coexpression predicts poor outcome in oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 117(6):743–753PubMedCrossRefGoogle Scholar
  46. 46.
    Krockenberger M et al (2007) Transketolase-like 1 expression correlates with subtypes of ovarian cancer and the presence of distant metastases. Int J Gynecol Cancer 17(1):101–106PubMedCrossRefGoogle Scholar
  47. 47.
    Mayer A, Von Wallbrunn A, Vaupel P (2010) Glucose metabolism of malignant cells is not regulated by transketolase-like (TKTL)-1. Int J Oncol 37(2):265–271PubMedCrossRefGoogle Scholar
  48. 48.
    Mayer A, Von Wallbrunn A, Vaupel P (2011) Evidence against a major role for TKTL-1 in hypoxic and normoxic cancer cells. Adv Exp Med Biol 701:123–128PubMedGoogle Scholar
  49. 49.
    Bentz S et al (2013) Hypoxia induces the expression of transketolase-like 1 in human colorectal cancer. Digestion 88(3):182–192PubMedCrossRefGoogle Scholar
  50. 50.
    Wanka C, Steinbach JP, Rieger J (2012) Tp53-induced glycolysis and apoptosis regulator (TIGAR) protects glioma cells from starvation-induced cell death by up-regulating respiration and improving cellular redox homeostasis. J Biol Chem 287(40):33436–33446PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Sun W et al (2010) TKTL1 is activated by promoter hypomethylation and contributes to head and neck squamous cell carcinoma carcinogenesis through increased aerobic glycolysis and HIF1alpha stabilization. Clin Cancer Res 16(3):857–866PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Maslova AO, Meshalkina LE, Kochetov GA (2012) Computer modeling of transketolase-like protein, TKTL1, a marker of certain tumor tissues. Biochem Biokhimiia 77(3):296–299CrossRefGoogle Scholar
  53. 53.
    Meshalkina LE et al (2013) Is transketolase-like protein, TKTL1, transketolase? Biochim Biophys Acta 1832(3):387–390PubMedCrossRefGoogle Scholar
  54. 54.
    Schneider S et al (2012) A delta38 deletion variant of human transketolase as a model of transketolase-like protein 1 exhibits no enzymatic activity. PLoS ONE 7(10):e48321PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Yuan W et al (2010) Silencing of TKTL1 by siRNA inhibits proliferation of human gastric cancer cells in vitro and in vivo. Cancer Biol Ther 9(9):710–716PubMedCrossRefGoogle Scholar
  56. 56.
    Xu X et al (2009) Transketolase-like protein 1 (TKTL1) is required for rapid cell growth and full viability of human tumor cells. Int J Cancer 124(6):1330–1337PubMedCrossRefGoogle Scholar
  57. 57.
    Zhao F et al (2010) Imatinib resistance associated with BCR-ABL upregulation is dependent on HIF-1alpha-induced metabolic reprograming. Oncogene 29(20):2962–2972PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Liu H et al (2010) Fructose induces transketolase flux to promote pancreatic cancer growth. Cancer Res 70(15):6368–6376PubMedCrossRefGoogle Scholar
  59. 59.
    Shimizu T et al (2014) Frequent alteration of the protein synthesis of enzymes for glucose metabolism in hepatocellular carcinomas. J Gastroenterol 49(9):1324–1332PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Mori S et al (2009) Anchorage-independent cell growth signature identifies tumors with metastatic potential. Oncogene 28(31):2796–2805PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Lin CC et al (2011) Malignant pleural effusion cells show aberrant glucose metabolism gene expression. Eur Respir J 37(6):1453–1465PubMedCrossRefGoogle Scholar
  62. 62.
    Mohd Omar MF et al (2010) Molecular-assisted immunohistochemical optimization. Acta Histochem 112(6):519–528PubMedCrossRefGoogle Scholar
  63. 63.
    Uhlen M et al (2010) Towards a knowledge-based human protein atlas. Nat Biotechnol 28(12):1248–1250PubMedCrossRefGoogle Scholar
  64. 64.
    Bery A et al (2014) Deciphering the ovarian cancer ascites fluid peptidome. Clin Proteomics 11(1):13PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Paoletti F, Mocali A, Tombaccini D (1997) Cysteine proteinases are responsible for characteristic transketolase alterations in Alzheimer fibroblasts. J Cell Physiol 172(1):63–68PubMedCrossRefGoogle Scholar
  66. 66.
    Vizan P et al (2009) Modulation of pentose phosphate pathway during cell cycle progression in human colon adenocarcinoma cell line HT29. Int J Cancer 124(12):2789–2796PubMedCrossRefGoogle Scholar
  67. 67.
    Pyragius CE et al (2013) Aberrant lipid metabolism: an emerging diagnostic and therapeutic target in ovarian cancer. Int J Mol Sci 14(4):7742–7756PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Basu TK, Dickerson JW (1976) The thiamin status of early cancer patients with particular reference to those with breast and bronchial carcinomas. Oncology 33(5–6):250–252PubMedCrossRefGoogle Scholar
  69. 69.
    Comin-Anduix B et al (2001) The effect of thiamine supplementation on tumour proliferation. A metabolic control analysis study. Eur J Biochem FEBS 268(15):4177–4182CrossRefGoogle Scholar
  70. 70.
    Pamukcu AM et al (1970) Effects of the coadministration of thiamine on the incidence of urinary bladder carcinomas in rats fed bracken fern. Cancer Res 30(11):2671–2674PubMedGoogle Scholar
  71. 71.
    Lu’o’ng KV, Nguyen LT (2013) The role of thiamine in cancer: possible genetic and cellular signaling mechanisms. Cancer Genomics Proteomics 10(4):169–185PubMedGoogle Scholar
  72. 72.
    Zhang H et al (2010) Inhibition of protein phosphorylation in MIA pancreatic cancer cells: confluence of metabolic and signaling pathways. J Proteome Res 9(2):980–989PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Yang CM et al (2010) The in vitro and in vivo anti-metastatic efficacy of oxythiamine and the possible mechanisms of action. Clin Exp Metastasis 27(5):341–349PubMedCrossRefGoogle Scholar
  74. 74.
    Ji H et al (2007) LKB1 modulates lung cancer differentiation and metastasis. Nature 448(7155):807–810PubMedCrossRefGoogle Scholar
  75. 75.
    Wang J et al (2013) Inhibition of transketolase by oxythiamine altered dynamics of protein signals in pancreatic cancer cells. Exp Hematol Oncol 2:18PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Carmela Ricciardelli
    • 1
    Email author
  • Noor A. Lokman
    • 1
  • Sowmya Cheruvu
    • 1
  • Izza A. Tan
    • 1
  • Miranda P. Ween
    • 2
  • Carmen E. Pyragius
    • 1
  • Andrew Ruszkiewicz
    • 3
    • 4
  • Peter Hoffmann
    • 5
  • Martin K. Oehler
    • 1
    • 6
  1. 1.Discipline of Obstetrics and Gynaecology, School of Paediatrics and Reproductive Health, Robinson Research InstituteUniversity of AdelaideAdelaideAustralia
  2. 2.Research Centre for Infectious Diseases, School of Molecular BiosciencesUniversity of AdelaideAdelaideAustralia
  3. 3.Centre of Cancer BiologyUniversity of South AustraliaAdelaideAustralia
  4. 4.Department of Anatomical PathologySA PathologyAdelaideAustralia
  5. 5.Adelaide Proteomics Centre, School of Molecular and Biomedical ScienceUniversity of AdelaideAdelaideAustralia
  6. 6.Department of Gynaecological OncologyRoyal Adelaide HospitalAdelaideAustralia

Personalised recommendations