Advertisement

Clinical & Experimental Metastasis

, Volume 32, Issue 4, pp 335–344 | Cite as

Dormancy and growth of metastatic breast cancer cells in a bone-like microenvironment

  • Donna M. Sosnoski
  • Robert J. Norgard
  • Cassidy D. Grove
  • Shelby J. Foster
  • Andrea M. MastroEmail author
Research Paper

Abstract

Breast cancer can reoccur, often as bone metastasis, many years if not decades after the primary tumor has been treated. The factors that stimulate dormant metastases to grow are not known, but bone metastases are often associated with skeletal trauma. We used a dormancy model of MDA-MB-231BRMS1, a metastasis-suppressed human breast cancer cell line, co-cultured with MC3T3-E1 osteoblasts in a long term, three dimensional culture system to test the hypothesis that bone remodeling cytokines could stimulate dormant cells to grow. The cancer cells attached to the matrix produced by MC3T3-E1 osteoblasts but grew slowly or not at all until the addition of bone remodeling cytokines, TNFα and IL-β. Stimulation of cell proliferation by these cytokines was suppressed with indomethacin, an inhibitor of cyclooxygenase and of prostaglandin production, or a prostaglandin E2 (PGE2) receptor antagonist. Addition of PGE2 directly to the cultures also stimulated cell proliferation. MCF-7, non-metastatic breast cancer cells, remained dormant when co-cultured with normal human osteoblast and fibroblast growth factor. Similar to the MDA-MB-231BRMS1 cells, MCF-7 proliferation increased in response to TNFα and IL-β. These findings suggest that changes in the bone microenvironment due to inflammatory cytokines associated with bone repair or excess turnover may trigger the occurrence of latent bone metastasis.

Keywords

Breast cancer Dormancy Three-dimensional bioreactor Bone metastases Prostaglandins 

Notes

Acknowledgments

This work was supported by a pilot grant from METAvivor and by the U.S. Army Medical and Materiel Command Breast Cancer Idea Program, Grant W81WH-1s2-1-0127. We thank Dr. K. Sandeep Prabhu for thoughtful discussion.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    DeSantis C et al (2013) Breast cancer statistics, 2013. Cancer J Clin 64(1):52–62CrossRefGoogle Scholar
  2. 2.
    Klein CA (2011) Framework models of tumor dormancy from patient-derived observations. Curr Opin Genet Dev 21(1):42–49CrossRefPubMedGoogle Scholar
  3. 3.
    Demicheli R et al (2007) Tumor dormancy and surgery-driven interruption of dormancy in breast cancer: learning from failures. Nat Clin Pract Oncol 4(12):699–710CrossRefPubMedGoogle Scholar
  4. 4.
    Lipton A et al (2009) The science and practice of bone health in oncology: managing bone loss and metastasis in patients with solid tumors. J Natl Compr Cancer Netw 7(Suppl 7):S1–S29 quiz S30Google Scholar
  5. 5.
    Rubens RD (2000) Bone metastases–incidence and complications. In: Rubens RD, Mundy GR (eds) Cancer and the skeleton. Martin Dunitz, London 286Google Scholar
  6. 6.
    Naumov GN, Folkman J, Straume O (2009) Tumor dormancy due to failure of angiogenesis: role of the microenvironment. Clin Exp Metastasis 26(1):51–60CrossRefPubMedGoogle Scholar
  7. 7.
    Demicheli R et al (2008) Recurrence dynamics does not depend on the recurrence site. Breast Cancer Res 10(5):R83CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Aguirre-Ghiso JA, Bragado P, Sosa MS (2013) Metastasis awakening: targeting dormant cancer. Nat Med 19(3):276–277CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Weiss L (1990) Metastatic inefficiency. Adv Cancer Res 54:159–211CrossRefPubMedGoogle Scholar
  10. 10.
    Pantel K et al (1993) Differential expression of proliferation-associated molecules in individual micrometastatic carcinoma cells. J Natl Cancer Inst 85(17):1419–1424CrossRefPubMedGoogle Scholar
  11. 11.
    Hedley BD, Chambers AF (2009) Tumor dormancy and metastasis. Adv Cancer Res 102:67–101CrossRefPubMedGoogle Scholar
  12. 12.
    Takeuchi H, Muto Y, Tashiro H (2009) Clinicopathological characteristics of recurrence more than 10 years after surgery in patients with breast carcinoma. Anticancer Res 29(8):3445–3448PubMedGoogle Scholar
  13. 13.
    Pantel K et al (2003) Detection and clinical implications of early systemic tumor cell dissemination in breast cancer. Clin Cancer Res 9(17):6326–6334PubMedGoogle Scholar
  14. 14.
    Pantel K, Brakenhoff RH, Brandt B (2008) Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nat Rev Cancer 8(5):329–340CrossRefPubMedGoogle Scholar
  15. 15.
    Baccelli I et al (2013) Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nat Biotechnol 31(6):539–544CrossRefPubMedGoogle Scholar
  16. 16.
    Das Roy L et al (2009) Breast-cancer-associated metastasis is significantly increased in a model of autoimmune arthritis. Breast Cancer Res 11(4):R56CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Yano S (2014) Metastatic bone lesion due to methotrexate and etanercept 24 years after breast cancer treatment. BMJ Case Rep. doi: 10.1136/bcr-2013-202615 PubMedGoogle Scholar
  18. 18.
    Rotolo N et al (2013) Metastasis at a tracheostomy site as the presenting sign of late recurrent breast cancer. Head Neck 35(11):E359–E362CrossRefPubMedGoogle Scholar
  19. 19.
    Demicheli R et al (2008) The effects of surgery on tumor growth: a century of investigations. Ann Oncol 19(11):1821–1828CrossRefPubMedGoogle Scholar
  20. 20.
    Schneider A et al (2005) Bone turnover mediates preferential localization of prostate cancer in the skeleton. Endocrinology 146(4):1727–1736CrossRefPubMedGoogle Scholar
  21. 21.
    Tashjian AH Jr, Gagel RF (2006) Teriparatide [human PTH(1-34)]: 2.5 years of experience on the use and safety of the drug for the treatment of osteoporosis. J Bone Miner Res 21(3):354–365CrossRefPubMedGoogle Scholar
  22. 22.
    Mundy GR et al (2008) Cytokines and bone remodeling. In: Marus R et al (eds) Osteoporosis. Editors Academic Press, New York, pp 491–528CrossRefGoogle Scholar
  23. 23.
    Dhurjati R et al (2006) Extended-term culture of bone cells in a compartmentalized bioreactor. Tissue Eng 12(11):3045–3054CrossRefPubMedGoogle Scholar
  24. 24.
    Cailleau R, Olive M, Cruciger QV (1978) Long-term human breast carcinoma cell lines of metastatic origin: preliminary characterization. In Vitro 14:911–915CrossRefPubMedGoogle Scholar
  25. 25.
    Mastro AM, Vogler EA (2009) A three-dimensional osteogenic tissue model for the study of metastatic tumor cell interactions with bone. Cancer Res 69(10):4097CrossRefPubMedGoogle Scholar
  26. 26.
    Phillips KK et al (1996) Suppression of MDA-MB-435 breast carcinoma cell metastasis following the introduction of human chromosome 11. Cancer Res 56(6):1222–1227PubMedGoogle Scholar
  27. 27.
    Krishnan V et al (2011) Dynamic interaction between breast cancer cells and osteoblastic tissue: comparison of two- and three-dimensional cultures. J Cell Physiol 226(8):2150–2158CrossRefPubMedGoogle Scholar
  28. 28.
    Phadke PA et al (2008) BRMS1 suppresses breast cancer experimental metastasis to multiple organs by inhibiting several steps of the metastatic process. Am J Pathol 172(3):809–817CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Sosnoski DM et al (2012) Changes in cytokines of the bone microenvironment during breast cancer metastasis. Int J Breast Cancer 2012:160265CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Wang H et al (1997) Basic fibroblast growth factor causes growth arrest in MCF-7 human breast cancer cells while inducing both mitogenic and inhibitory G1 events. Cancer Res 57(9):1750–1757PubMedGoogle Scholar
  31. 31.
    Sato K et al (1986) Stimulation of prostaglandin E2 and bone resorption by recombinant human interleukin 1 alpha in fetal mouse bones. Biochem Biophys Res Commun 138(2):618–624CrossRefPubMedGoogle Scholar
  32. 32.
    Sato K et al (1987) Tumor necrosis factor type alpha (cachectin) stimulates mouse osteoblast-like cells (MC3T3-E1) to produce macrophage-colony stimulating activity and prostaglandin E2. Biochem Biophys Res Commun 145(1):323–329CrossRefPubMedGoogle Scholar
  33. 33.
    Bai X et al (2013) Prostaglandin E(2) receptor EP1-mediated phosphorylation of focal adhesion kinase enhances cell adhesion and migration in hepatocellular carcinoma cells. Int J Oncol 42(5):1833–1841PubMedGoogle Scholar
  34. 34.
    Sudo H et al (1983) In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J Cell Biol 96(1):191–198CrossRefPubMedGoogle Scholar
  35. 35.
    Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675CrossRefPubMedGoogle Scholar
  36. 36.
    Pilbeam CC, Harrison JR, Raisz LG (2002) Prostaglandins and bone metabolism. In: Bilezikian JP, Raisz LG, Rodan GA (eds) Principles of bone biology. Academic Press, New YorkGoogle Scholar
  37. 37.
    Mundy GR et al (2001) Cytokines and bone remodeling. In: Marcus RE, Feldman D, Kelsey J (eds) Osteoporosis. Academic Press, New York, pp 373–403CrossRefGoogle Scholar
  38. 38.
    Mark KS, Trickler WJ, Miller DW (2001) Tumor necrosis factor-alpha induces cyclooxygenase-2 expression and prostaglandin release in brain microvessel endothelial cells. J Pharmacol Exp Ther 297(3):1051–1058PubMedGoogle Scholar
  39. 39.
    Ono M (2008) Molecular links between tumor angiogenesis and inflammation: inflammatory stimuli of macrophages and cancer cells as targets for therapeutic strategy. Cancer Sci 99(8):1501–1506CrossRefPubMedGoogle Scholar
  40. 40.
    Oshima H, Oshima M (2012) The inflammatory network in the gastrointestinal tumor microenvironment: lessons from mouse models. J Gastroenterol 47(2):97–106CrossRefPubMedGoogle Scholar
  41. 41.
    Najmi S et al (2005) Flavopiridol blocks integrin-mediated survival in dormant breast cancer cells. Clin Cancer Res 11(5):2038–2046CrossRefPubMedGoogle Scholar
  42. 42.
    Phadke PA, Mercer RR, Harms JF, Jia Y, Kappes JC, Frost AR, Jewell JL, Bussard KM, Nelson S, Moore C, Gay CV, Mastro AM, Welch DR (2006) Kinetics of metastatic breast cancer cell trafficking in bone. Clin Cancer Res 12:1431–1440CrossRefPubMedCentralPubMedGoogle Scholar
  43. 43.
    Blackwell KA, Raisz LG, Pilbeam CC (2010) Prostaglandins in bone: bad cop, good cop? Trends Endocrinol Metab 21(5):294–301CrossRefPubMedCentralPubMedGoogle Scholar
  44. 44.
    Ristimaki A et al (2002) Prognostic significance of elevated cyclooxygenase-2 expression in breast cancer. Cancer Res 62(3):632–635PubMedGoogle Scholar
  45. 45.
    Singh B et al (2007) COX-2 involvement in breast cancer metastasis to bone. Oncogene 26(26):3789–3796CrossRefPubMedGoogle Scholar
  46. 46.
    Schrey MP, Patel KV (1995) Prostaglandin E2 production and metabolism in human breast cancer cells and breast fibroblasts. Regulation by inflammatory mediators. Br J Cancer 72(6):1412–1419CrossRefPubMedCentralPubMedGoogle Scholar
  47. 47.
    Cicek M et al (2005) Breast cancer metastasis suppressor 1 inhibits gene expression by targeting nuclear factor-kappaB activity. Cancer Res 65(9):3586–3595CrossRefPubMedGoogle Scholar
  48. 48.
    Klein DC, Raisz LG (1970) Prostaglandins: stimulation of bone resorption in tissue culture. Endocrinology 86(6):1436–1440CrossRefPubMedGoogle Scholar
  49. 49.
    Planchon P et al (1995) Evidence for separate mechanisms of antiproliferative action of indomethacin and prostaglandin on MCF-7 breast cancer cells. Life Sci 57(12):1233–1240CrossRefPubMedGoogle Scholar
  50. 50.
    Sosa MS, Bragado P, Aguirre-Ghiso JA (2014) Mechanisms of disseminated cancer cell dormancy: an awakening field. Nat Rev Cancer 14(9):611–622CrossRefPubMedCentralPubMedGoogle Scholar
  51. 51.
    Wilson A, Trumpp A (2006) Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol 6:93–106CrossRefPubMedGoogle Scholar
  52. 52.
    Shiozawa Y et al (2008) The bone marrow niche: habitat to hematopoietic and mesenchymal stem cells, and unwitting host to molecular parasites. Leukemia 22(5):941–950CrossRefPubMedGoogle Scholar
  53. 53.
    Mirza AA et al (2014) MEKK2 regulates focal adhesion stability and motility in invasive breast cancer cells. Biochim Biophys Acta 1843(5):945–954CrossRefPubMedGoogle Scholar
  54. 54.
    Khoon MCS (2015) Experimental models of bone metastasis: opportunities for the study of cancer dormancy. Adv Deliv Rev. doi: 10.1016/j.addr.2015.02.007 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Donna M. Sosnoski
    • 1
  • Robert J. Norgard
    • 1
  • Cassidy D. Grove
    • 1
  • Shelby J. Foster
    • 1
  • Andrea M. Mastro
    • 1
    Email author
  1. 1.Department of Biochemistry and Molecular BiologyThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations