Clinical & Experimental Metastasis

, Volume 31, Issue 4, pp 435–446 | Cite as

A humanized tissue-engineered in vivo model to dissect interactions between human prostate cancer cells and human bone

  • Parisa Hesami
  • Boris M. Holzapfel
  • Anna Taubenberger
  • Martine Roudier
  • Ladan Fazli
  • Shirly Sieh
  • Laure Thibaudeau
  • Laura S. Gregory
  • Dietmar W. HutmacherEmail author
  • Judith A. ClementsEmail author
Research Paper


Currently used xenograft models for prostate cancer bone metastasis lack the adequate tissue composition necessary to study the interactions between human prostate cancer cells and the human bone microenvironment. We introduce a tissue engineering approach to explore the interactions between human tumor cells and a humanized bone microenvironment. Scaffolds, seeded with human primary osteoblasts in conjunction with BMP7, were implanted into immunodeficient mice to form humanized tissue engineered bone constructs (hTEBCs) which consequently resulted in the generation of highly vascularized and viable humanized bone. At 12 weeks, PC3 and LNCaP cells were injected into the hTEBCs. Seven weeks later the mice were euthanized. Micro-CT, histology, TRAP, PTHrP and osteocalcin staining results reflected the different characteristics of the two cell lines regarding their phenotypic growth pattern within bone. Microvessel density, as assessed by vWF staining, showed that tumor vessel density was significantly higher in LNCaP injected hTEBC implants than in those injected with PC3 cells (p < 0.001). Interestingly, PC3 cells showed morphological features of epithelial and mesenchymal phenotypes suggesting a cellular plasticity within this microenvironment. Taken together, a highly reproducible humanized model was established which is successful in generating LNCaP and PC3 tumors within a complex humanized bone microenvironment. This model simulates the conditions seen clinically more closely than any other model described in the literature to date and hence represents a powerful experimental platform that can be used in future work to investigate specific biological questions relevant to bone metastasis.


Tissue engineering Prostate cancer Bone metastasis Osteotropism Mouse model 



The work presented by the authors is supported by the Prostate Cancer Foundation of Australia, the National Health & Medical Research Council (NHMRC) Fellowship Grant, the Australian Research Council and the German Research Foundation (DFG HO 5068/1-1). We thank Baxter Healthcare International and Olympus Biotech for providing fibrin glue and rhBMP-7, respectively.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10585_2014_9638_MOESM1_ESM.doc (7.6 mb)
Supplementary material 1 (DOC 7832 kb)


  1. 1.
    Siegel R et al (2012) Cancer treatment and survivorship statistics, 2012. CA Cancer J Clin 62(4):220–241PubMedCrossRefGoogle Scholar
  2. 2.
    Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM (2010) GLOBOCAN 2008 v2.0, cancer incidence and mortality worldwide: IARC CancerBase No. 10. In: Cancer IAfRo. IARC, LyonGoogle Scholar
  3. 3.
    Rades D, Schild SE, Abrahm JL (2010) Treatment of painful bone metastases. Nat Rev Clin Oncol 7(4):220–229PubMedCrossRefGoogle Scholar
  4. 4.
    Singh AS, Figg WD (2005) In vivo models of prostate cancer metastasis to bone. J Urol 174(3):820–826PubMedGoogle Scholar
  5. 5.
    Pilge H et al (2011) Diagnostics and therapy of spinal metastases. Orthopade 40(2):185–193PubMedCrossRefGoogle Scholar
  6. 6.
    Holzapfel BM et al (2013) Humanised xenograft models of bone metastasis revisited: novel insights into species–specific mechanisms of cancer cell osteotropism. Cancer Metastasis Rev 32(1–2):129–145PubMedCrossRefGoogle Scholar
  7. 7.
    Corey E et al (2002) Establishment and characterization of osseous prostate cancer models: intra-tibial injection of human prostate cancer cells. Prostate 52(1):20–33PubMedCrossRefGoogle Scholar
  8. 8.
    Fizazi K et al (2003) Prostate cancer cells-osteoblast interaction shifts expression of growth/survival-related genes in prostate cancer and reduces expression of osteoprotegerin in osteoblasts. Clin Cancer Res 9(7):2587–2597PubMedGoogle Scholar
  9. 9.
    Yonou H et al (2003) Osteoprotegerin/osteoclastogenesis inhibitory factor decreases human prostate cancer burden in human adult bone implanted into nonobese diabetic/severe combined immunodeficient mice. Cancer Res 63(9):2096–2102PubMedGoogle Scholar
  10. 10.
    Yonou H et al (2001) Establishment of a novel species- and tissue-specific metastasis model of human prostate cancer in humanized non-obese diabetic/severe combined immunodeficient mice engrafted with human adult lung and bone. Cancer Res 61(5):2177–2182PubMedGoogle Scholar
  11. 11.
    Podgorski I et al (2005) Bone microenvironment modulates expression and activity of cathepsin B in prostate cancer. Neoplasia 7(3):207–223PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Nemeth JA et al (2000) Persistence of human vascular endothelium in experimental human prostate cancer bone tumors. Clin Exp Metastasis 18(3):231–237PubMedCrossRefGoogle Scholar
  13. 13.
    Storey JA, Torti FM (2007) Bone metastases in prostate cancer: a targeted approach. Curr Opin Oncol 19(3):254–258PubMedCrossRefGoogle Scholar
  14. 14.
    Hung TT et al (2011) Zoledronic acid preserves bone structure and increases survival but does not limit tumour incidence in a prostate cancer bone metastasis model. PLoS One 6(5):e19389PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Kolambkar YM et al (2010) Colonization and osteogenic differentiation of different stem cell sources on electrospun nanofiber meshes. Tissue Eng A 16(10):3219–3230CrossRefGoogle Scholar
  16. 16.
    Vaquette C et al (2013) Effect of culture conditions and calcium phosphate coating on ectopic bone formation. Biomaterials 34(22):5538–5551PubMedCrossRefGoogle Scholar
  17. 17.
    Reichert JC et al (2010) Mineralized human primary osteoblast matrices as a model system to analyse interactions of prostate cancer cells with the bone microenvironment. Biomaterials 31(31):7928–7936PubMedCrossRefGoogle Scholar
  18. 18.
    Sieh S et al (2010) Interactions between human osteoblasts and prostate cancer cells in a novel 3D in vitro model. Organogenesis 6(3):181–188PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Reichert JC et al (2010) Ovine bone- and marrow-derived progenitor cells and their potential for scaffold-based bone tissue engineering applications in vitro and in vivo. J Tissue Eng Regen Med 4(7):565–576PubMedCrossRefGoogle Scholar
  20. 20.
    Nemeth JA et al (1999) Severe combined immunodeficient-hu model of human prostate cancer metastasis to human bone. Cancer Res 59(8):1987–1993PubMedGoogle Scholar
  21. 21.
    Erlebacher A, Derynck R (1996) Increased expression of TGF-beta 2 in osteoblasts results in an osteoporosis-like phenotype. J Cell Biol 132(1–2):195–210PubMedCrossRefGoogle Scholar
  22. 22.
    Gray DR et al (2004) Short-term human prostate primary xenografts: an in vivo model of human prostate cancer vasculature and angiogenesis. Cancer Res 64(5):1712–1721PubMedCrossRefGoogle Scholar
  23. 23.
    Offersen BV et al (2002) Comparison of methods of microvascular staining and quantification in prostate carcinoma: relevance to prognosis. APMIS 110(2):177–185PubMedCrossRefGoogle Scholar
  24. 24.
    de la Taille A et al (2000) Microvessel density as a predictor of PSA recurrence after radical prostatectomy. A comparison of CD34 and CD31. Am J Clin Pathol 113(4):555–562PubMedCrossRefGoogle Scholar
  25. 25.
    Berner A et al (2012) Biomimetic tubular nanofiber mesh and platelet rich plasma-mediated delivery of BMP-7 for large bone defect regeneration. Cell Tissue Res 347(3):603–612PubMedCrossRefGoogle Scholar
  26. 26.
    Roberts S et al (2009) Immunohistochemical study of collagen types I and II and procollagen IIA in human cartilage repair tissue following autologous chondrocyte implantation. Knee 16(5):398–404PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Price PA et al (1976) Characterization of a gamma-carboxyglutamic acid-containing protein from bone. Proc Natl Acad Sci USA 73(5):1147–1151CrossRefGoogle Scholar
  28. 28.
    Yeung F et al (2002) Regulation of human osteocalcin promoter in hormone-independent human prostate cancer cells. J Biol Chem 277(4):2468–2476PubMedCrossRefGoogle Scholar
  29. 29.
    Liao J et al (2008) Tumor expressed PTHrP facilitates prostate cancer-induced osteoblastic lesions. Int J Cancer 123(10):2267–2278PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Cox ME et al (2009) Insulin receptor expression by human prostate cancers. Prostate 69(1):33–40PubMedCrossRefGoogle Scholar
  31. 31.
    Corey E et al (2002) Establishment and characterization of osseous prostate cancer models: intra-tibial injection of human prostate cancer cells. Prostate 52(1):20–33PubMedCrossRefGoogle Scholar
  32. 32.
    Richmond A, Su Y (2008) Mouse xenograft models vs GEM models for human cancer therapeutics. Dis Model Mech 1(2–3):78–82PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Dreesen O, Brivanlou AH (2007) Signaling pathways in cancer and embryonic stem cells. Stem Cell Rev 3(1):7–17PubMedCrossRefGoogle Scholar
  34. 34.
    Meeting Summary (2012) Improving animal models for regenerative medicine. In: NIH symposium, May 23–24, Bethesda. Accessed 2 Feb 2013
  35. 35.
    Chu K et al (2008) Cadherin-11 promotes the metastasis of prostate cancer cells to bone. Mol Cancer Res (MCR) 6(8):1259–1267CrossRefGoogle Scholar
  36. 36.
    Sardana G et al (2008) Proteomic analysis of conditioned media from the PC3, LNCaP, and 22Rv1 prostate cancer cell lines: discovery and validation of candidate prostate cancer biomarkers. J Proteome Res 7(8):3329–3338PubMedCrossRefGoogle Scholar
  37. 37.
    Tai S et al (2011) PC3 is a cell line characteristic of prostatic small cell carcinoma. Prostate 71(15):1668–1679PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Nemeth JA et al (2002) Matrix metalloproteinase activity, bone matrix turnover, and tumor cell proliferation in prostate cancer bone metastasis. J Natl Cancer Inst 94(1):17–25PubMedCrossRefGoogle Scholar
  39. 39.
    Wu G et al (1998) Characterization of the cell-specific expression of parathyroid hormone-related protein in normal and neoplastic prostate tissue. Urology 51(5A Suppl):110–120PubMedCrossRefGoogle Scholar
  40. 40.
    Raheem O et al (2011) A novel patient-derived intra-femoral xenograft model of bone metastatic prostate cancer that recapitulates mixed osteolytic and osteoblastic lesions. J Transl Med 9:185PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Brown JM, Wilson WR (2004) Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer 4(6):437–447PubMedCrossRefGoogle Scholar
  42. 42.
    Fernandez A et al (2001) Angiogenic potential of prostate carcinoma cells overexpressing bcl-2. J Natl Cancer Inst 93(3):208–213PubMedCrossRefGoogle Scholar
  43. 43.
    Haviv I, Thompson EW (2012) Soiling the seed: microenvironment and epithelial mesenchymal plasticity. Cancer Microenviron 5(1):1–3PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Kong D et al (2011) Cancer stem cells and epithelial-to-mesenchymal transition (EMT)-phenotypic cells: are they cousins or twins? Cancers 3(1):716–729PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Chung LW et al (2006) Stromal-epithelial interaction in prostate cancer progression. Clin Genitourin Cancer 5(2):162–170PubMedCrossRefGoogle Scholar
  46. 46.
    Hugo H et al (2007) Epithelial–mesenchymal and mesenchymal–epithelial transitions in carcinoma progression. J Cell Physiol 213(2):374–383PubMedCrossRefGoogle Scholar
  47. 47.
    Zhau HE et al (2008) Epithelial to mesenchymal transition (EMT) in human prostate cancer: lessons learned from ARCaP model. Clin Exp Metastasis 25(6):601–610PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Yates CC et al (2007) Co-culturing human prostate carcinoma cells with hepatocytes leads to increased expression of E-cadherin. Br J Cancer 96(8):1246–1252PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Said NA, Williams ED (2011) Growth factors in induction of epithelial-mesenchymal transition and metastasis. Cells Tissues Organs 193(1–2):85–97PubMedCrossRefGoogle Scholar
  50. 50.
    Lue HW et al (2011) LIV-1 promotes prostate cancer epithelial-to-mesenchymal transition and metastasis through HB-EGF shedding and EGFR-mediated ERK signaling. PLoS One 6(11):e27720PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Parisa Hesami
    • 1
    • 2
  • Boris M. Holzapfel
    • 2
    • 3
  • Anna Taubenberger
    • 4
  • Martine Roudier
    • 5
  • Ladan Fazli
    • 6
  • Shirly Sieh
    • 2
  • Laure Thibaudeau
    • 2
  • Laura S. Gregory
    • 7
  • Dietmar W. Hutmacher
    • 2
    • 8
    Email author
  • Judith A. Clements
    • 1
    • 9
    Email author
  1. 1.Australian Prostate Cancer Research Centre, Translational Research InstituteQueensland University of TechnologyWoolloongabbaAustralia
  2. 2.Regenerative Medicine Group, Institute of Health and Biomedical InnovationQueensland University of TechnologyKelvin GroveAustralia
  3. 3.Orthopedic Center for Musculoskeletal ResearchUniversity of WuerzburgWürzburgGermany
  4. 4.Group of Cellular MachinesBiotec TU DresdenDresdenGermany
  5. 5.Department of PathologyUniversity of WashingtonSeattleUSA
  6. 6.Vancouver Prostate Centre, Department of MedicineUniversity of British ColumbiaVancouverCanada
  7. 7.Skeletal Biology Program, School of Biomedical SciencesQueensland University of TechnologyKelvin GroveAustralia
  8. 8.George W Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaUSA
  9. 9.Cancer Program, Institute of Health and Biomedical InnovationQueensland University of TechnologyKelvin GroveAustralia

Personalised recommendations