Clinical & Experimental Metastasis

, Volume 30, Issue 5, pp 631–642

Outcome of metastatic breast cancer in selected women with or without deleterious BRCA mutations

  • S. Bayraktar
  • A. M. Gutierrez-Barrera
  • H. Lin
  • N. Elsayegh
  • T. Tasbas
  • J. K. Litton
  • N. K. Ibrahim
  • P. K. Morrow
  • M. Green
  • V. Valero
  • D. J. Booser
  • G. N. Hortobagyi
  • B. K. Arun
Research Paper


The aim of this study was to compare the time-to progression and overall survival (OS) in patients with metastatic breast cancer (MBC) with and without deleterious BRCA1/2 mutations. 195 women with MBC who were referred for BRCA genetic testing between 1997 and 2011 were included in the study. Logistic regression models and Cox proportional hazards models were fit to determine the associations between clinical variables and outcomes. Of 195 women with MBC, 21 % (n = 41) were positive for BRCA1/2 mutations. The number of metastatic sites at the time of metastatic disease was not different between BRCA1 versus BRCA2 carriers versus non-carriers (P = 0.77). The site of first metastasis was visceral-only in 70 % of BRCA1 carriers compared to 9 % in BRCA2 carriers and 37 % in non-carriers (P = 0.001). Median follow-up was 2.8 years. BRCA non-carriers and BRCA2 carriers had a longer time-to progression and OS compared to BRCA1 carriers (median time-to progression = 1.3 vs. 0.9 vs. 0.7 years; P = 0.31, and median OS = 4.88 vs. 4.94 vs. 1.34 years; P = 0.0065). In a multivariate model, no association was identified between BRCA positivity and time-to-event outcomes (P > 0.28). In addition, patients with triple-negative MBC carried a poorer prognosis irrespective of their BRCA status (P = 0.058 and P = 0.15 for the interaction term of BRCA status and triple-negative for time-to progression and OS, respectively). Our data indicate that BRCA1 carriers diagnosed with MBC have worse outcomes compared to BRCA2 carriers and non-carriers. However, the differences in outcome did not reach statistical significance likely due to small sample sizes.


BRCA mutation Chemotherapy Metastatic breast cancer Recurrence Survival 


  1. 1.
    Ries LAG, Eisner MP, Kosary CL, Hankey BF et al (2002) SEER cancer statistics review, 1975–2002. Accessed 26 Jan 2013
  2. 2.
    O’Shaughnessy J (2005) Extending survival with chemotherapy in metastatic breast cancer. Oncologist 10(Suppl 3):20–29PubMedCrossRefGoogle Scholar
  3. 3.
    Hayat MJ, Howlader N, Reichman ME, Edwards BK (2007) Cancer statistics, trends, and multiple primary cancer analyses from the Surveillance, Epidemiology, and End Results (SEER) Program. Oncologist 12(1):20–37PubMedCrossRefGoogle Scholar
  4. 4.
    Giordano SH, Buzdar AU, Kau SWC, Hortobagyi GN (2002) Improvement in breast cancer survival: results from M.D. Anderson Cancer Center protocols from 1975–2000. 2002 ASCO Annual Meeting. Proc Am Soc Clin Oncol 21:2002 (abstr 212)Google Scholar
  5. 5.
    Perou CM, Sorlie T, Eisen MB et al (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752PubMedCrossRefGoogle Scholar
  6. 6.
    Sorlie T, Perou CM, Tibshirani R et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98(19):10869–10874PubMedCrossRefGoogle Scholar
  7. 7.
    Sorlie T, Tibshirani R, Parker J et al (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 100(14):8418–8423PubMedCrossRefGoogle Scholar
  8. 8.
    Smid M, Wang Y, Zhang Y et al (2008) Subtypes of breast cancer show preferential site of relapse. Cancer Res 68:3108–3114PubMedCrossRefGoogle Scholar
  9. 9.
    Lin NU, Claus E, Sohl J et al (2008) Sites of distant recurrence and clinical outcomes in patients with metastatic triple-negative breast cancer: high incidence of central nervous system metastases. Cancer 113(10):2638–2645PubMedCrossRefGoogle Scholar
  10. 10.
    Gao D, Du J, Cong L et al (2009) Risk factors for initial lung metastasis from breast invasive ductal carcinoma in stages I–III of operable patients. Jpn J Clin Oncol 39(2):97–104PubMedCrossRefGoogle Scholar
  11. 11.
    Reis-Filho JS, Tutt AN (2008) Triple negative tumours: a critical review. Histopathology 52(1):108–118PubMedCrossRefGoogle Scholar
  12. 12.
    Kennedy RD, Quinn J, Johnston PH, Harkin DP (2002) BRCA1: mechanisms of inactivation and implications for management of patients. Lancet 360:1007–1014PubMedCrossRefGoogle Scholar
  13. 13.
    Verhoog LC, Brekelmans CT, Seynaeve C et al (1999) Survival in hereditary breast cancer associated with germline mutations of BRCA2. J Clin Oncol 17:3396–3402PubMedGoogle Scholar
  14. 14.
    Rennert G, Bisland-Naggan S, Barnett-Griness O et al (2007) Clinical outcomes of breast cancer in carriers of BRCA1 and BRCA2 mutations. N Engl J Med 357(2):115–123PubMedCrossRefGoogle Scholar
  15. 15.
    Brekelmans CT, Tilanus-Linhorst MM, Seynaeve C et al (2007) Tumour characteristics, survival and prognostic factors of hereditary breast cancer from BRCA2-, B. Eur J Cancer 43:867–876PubMedCrossRefGoogle Scholar
  16. 16.
    Kriege M, Seynaeve C, Meijers-Heijboer H et al (2008) Distant disease-free interval, site of first relapse and post-relapse survival in BRCA carriers. Breast Cancer Res Treat 111:303–311PubMedCrossRefGoogle Scholar
  17. 17.
    Bonadona V, Dussart-Moser S, Voirin N et al (2007) Prognosis of early-onset breast cancer based on BRCA1/2 mutation status in a French population-based cohort and review. Breast Cancer Res Treat 101(2):233–245PubMedCrossRefGoogle Scholar
  18. 18.
    Bordeleau L, Panchal S, Goodwin P (2010) Prognosis of BRCA-associated breast cancer: a summary of evidence. Breast Cancer Res Treat 119(1):13–24PubMedCrossRefGoogle Scholar
  19. 19.
    Tan DS, Rothermundt C, Thomas K et al (2008) “BRCAness” syndrome in ovarian cancer: a case-control study describing the clinical features and outcome of patients with epithelial ovarian cancer associated with BRCA1 and BRCA2 mutations. J Clin Oncol 26(34):5530–5536PubMedCrossRefGoogle Scholar
  20. 20.
    Yang D, Khan S, Sun Y et al (2011) Association of BRCA1 and BRCA2 mutations with survival, chemotherapy sensitivity, and gene mutator phenotype in patients with ovarian cancer. JAMA 306(14):1557–1565PubMedCrossRefGoogle Scholar
  21. 21.
    Alsop K, Fereday S, Meldrum C et al (2012) BRCA mutation frequency and patterns of treatment response in BRCA mutation-positive women with ovarian cancer: a report from the Australian Ovarian Cancer Study Group. J Clin Oncol 30(21):2654–2663PubMedCrossRefGoogle Scholar
  22. 22.
    Singletary SE, Greene FL (2003) Revision of breast cancer staging: the 6th edition of the TNM Classification. Semin Surg Oncol 21(1):53–59PubMedCrossRefGoogle Scholar
  23. 23.
    Black MM, Speer FD (1957) Nuclear structure in cancer tissues. Surg Gynecol Obstet 105(1):97–102PubMedGoogle Scholar
  24. 24.
    Bayraktar S, Gutieerz-Barrera A, Liu DD et al (2011) Outcome of triple-negative breast cancer in patients with or without deleterious BRCA mutations. Breast Cancer Res Treatment 130(1):145–153CrossRefGoogle Scholar
  25. 25.
    Bayraktar S, Gutierrez-Barrera AM, Liu D et al (2011) Outcome of triple-negative breast cancer in patients with or without deleterious BRCA mutations. Breast Cancer Res Treat 130(1):145–153PubMedCrossRefGoogle Scholar
  26. 26.
    Lakhani SR, Jacquemier J, Sloane JP et al (1998) Multifactorial analysis of differences between sporadic breast cancers and cancers involving BRCA1 and BRCA2 mutations. J Natl Cancer Inst 90(15):1138–1145PubMedCrossRefGoogle Scholar
  27. 27.
    Atchley DP, Albarracin CT, Lopez A et al (2008) Clinical and pathologic characteristics of patients with BRCA-positive and BRCA-negative breast cancer. J Clin Oncol 26(26):4282–4288PubMedCrossRefGoogle Scholar
  28. 28.
    Byrski T, Gronwald J, Huzarski T et al (2008) Response to neo-adjuvant chemotherapy in women with BRCA1-positive breast cancers. Breast Cancer Res Treat 108(2):289–296PubMedCrossRefGoogle Scholar
  29. 29.
    Arun B, Bayraktar S, Liu DD et al (2011) Response to neoadjuvant systemic therapy for breast cancer in BRCA mutation carriers and noncarriers: a single-institution experience. J Clin Oncol 29(28):3739–3746PubMedCrossRefGoogle Scholar
  30. 30.
    Zakhartseva LM, Gorovenko NG, Podolskaya SV et al (2009) Breast cancer immunohistochemical features in young women with BRCA 1/2 mutations. Exp Oncol 31(3):174–178PubMedGoogle Scholar
  31. 31.
    Hall MJ, Reid JE, Burbidge LA et al (2009) BRCA1 and BRCA2 mutations in women of different ethnicities undergoing testing for hereditary breast-ovarian cancer. Cancer 115(10):2222–2233PubMedCrossRefGoogle Scholar
  32. 32.
    Haffty BG, Silber A, Matloff E et al (2006) Racial differences in the incidence of BRCA1 and BRCA2 mutations in a cohort of early onset breast cancer patients: African American compared to white women. J Med Genet 43(2):133–137PubMedCrossRefGoogle Scholar
  33. 33.
    John EM, Miron A, Gong G et al (2007) Prevalence of pathogenic BRCA1 mutation carriers in 5 US racial/ethnic groups. JAMA 298(24):2869–2876PubMedCrossRefGoogle Scholar
  34. 34.
    Hunter KW, Broman KW, Voyer TL et al (2001) Predisposition to efficient mammary tumor metastatic progression is linked to the breast cancer metastasis suppressor gene Brms1. Cancer Res 61(24):8866–8872PubMedGoogle Scholar
  35. 35.
    Lifsted T, Le Voyer T, Williams M et al (1998) Identification of inbred mouse strains harboring genetic modifiers of mammary tumor age of onset and metastatic progression. Int J Cancer 77(4):640–644PubMedCrossRefGoogle Scholar
  36. 36.
    Park YG, Zhao X, Lesueur F et al (2005) Sipa1 is a candidate for underlying the metastasis efficiency modifier locus Mtes1. Nat Genet 37(10):1055–1062PubMedCrossRefGoogle Scholar
  37. 37.
    Crawford NP, Qian X, Ziogas A et al (2007) Rrp1b, a new candidate susceptibility gene for breast cancer progression and metastasis. PLoS Genet 3(11):e214PubMedCrossRefGoogle Scholar
  38. 38.
    Crawford NP, Alsarraj J, Lukes L et al (2008) Bromodomain 4 activation predicts breast cancer survival. Proc Natl Acad Sci USA 105(17):6380–6385PubMedCrossRefGoogle Scholar
  39. 39.
    Crawford NP, Walker RC, Lukes L et al (2008) The Diasporin Pathway: a tumor progression-related transcriptional network that predicts breast cancer survival. Clin Exp Metastasis 25(4):357–369PubMedCrossRefGoogle Scholar
  40. 40.
    Hsieh SM, Look MP, Sieuwerts AM et al (2009) Distinct inherited metastasis susceptibility exists for different breast cancer subtypes: a prognosis study. Breast Cancer Res 11(5):R75PubMedCrossRefGoogle Scholar
  41. 41.
    Dent R, Trudeau M, Pritchard KI et al (2007) Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res 13(15 Pt 1):4429–4434PubMedCrossRefGoogle Scholar
  42. 42.
    Foulkes WD, Metcalfe K, Hanna W et al (2003) Disruption of the expected positive correlation between breast tumor size and lymph node status in BRCA1-related breast carcinoma. Cancer 98(8):1569–1577PubMedCrossRefGoogle Scholar
  43. 43.
    Liedtke C, Mazouni C, Hess KR et al (2008) Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol 26(8):1275–1281PubMedCrossRefGoogle Scholar
  44. 44.
    Rodriguez-Pinilla SM, Sarrio D, Honrado E et al (2006) Prognostic significance of basal-like phenotype and fascin expression in node-negative invasive breast carcinomas. Clin Cancer Res 12(5):1533–1539PubMedCrossRefGoogle Scholar
  45. 45.
    Therasse P, Arbuck SG, Eisenhauer EA et al (2000) New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92(3):205–216PubMedCrossRefGoogle Scholar
  46. 46.
    Lai R, Dang CT, Malkin MG et al (2004) The risk of central nervous system metastases after trastuzumab therapy in patients with breast carcinoma. Cancer 101(4):810–816PubMedCrossRefGoogle Scholar
  47. 47.
    Wang Y, Klijn JG, Zhang Y et al (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365(9460):671–679PubMedGoogle Scholar
  48. 48.
    Smid M, Wang Y, Klijn JG et al (2006) Genes associated with breast cancer metastatic to bone. J Clin Oncol 24(15):2261–2267PubMedCrossRefGoogle Scholar
  49. 49.
    Albiges L, Andre F, Balleyguier C et al (2005) Spectrum of breast cancer metastasis in BRCA1 mutation carriers: highly increased incidence of brain metastases. Ann Oncol 16(11):1846–1847PubMedCrossRefGoogle Scholar
  50. 50.
    Chiang AC, Massague J (2008) Molecular basis of metastasis. N Engl J Med 359(26):2814–2823PubMedCrossRefGoogle Scholar
  51. 51.
    Kennedy RD, Quinn JE, Mullan PB et al (2004) The role of BRCA1 in the cellular response to chemotherapy. J Natl Cancer Inst 96(22):1659–1668PubMedCrossRefGoogle Scholar
  52. 52.
    Foulkes WD (2006) BRCA1 and BRCA2: chemosensitivity, treatment outcomes and prognosis. Fam Cancer 5(2):135–142PubMedCrossRefGoogle Scholar
  53. 53.
    James CR, Quinn JE, Mullan PB et al (2007) (2007) BRCA1, a potential predictive biomarker in the treatment of breast cancer. Oncologist 12(2):142–150PubMedCrossRefGoogle Scholar
  54. 54.
    Robson ME, Chappuis PO, Satagopan J et al (2004) A combined analysis of outcome following breast cancer: differences in survival based on BRCA1/BRCA2 mutation status and administration of adjuvant treatment. Breast Cancer Res 6(1):R8–R17PubMedCrossRefGoogle Scholar
  55. 55.
    Kriege M, Seynaeve C, Meijers-Heijboer H et al (2009) Sensitivity to first-line chemotherapy for metastatic breast cancer in BRCA1 and BRCA2 mutation carriers. J Clin Oncol 27(23):3764–3771PubMedCrossRefGoogle Scholar
  56. 56.
    Kurebayashi J, Yamamoto Y, Kurosumi M et al (2006) Loss of BRCA1 expression may predict shorter time-to-progression in metastatic breast cancer patients treated with taxanes. Anticancer Res 26(1B):695–701Google Scholar
  57. 57.
    Wysocki PJ, Korski K, Lamperska K et al (2008) Primary resistance to docetaxel-based chemotherapy in metastatic breast cancer patients correlates with a high frequency of BRCA1 mutations. Med Sci Monit 14(7):SC7–SC10Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • S. Bayraktar
    • 1
    • 2
  • A. M. Gutierrez-Barrera
    • 2
  • H. Lin
    • 3
  • N. Elsayegh
    • 2
  • T. Tasbas
    • 1
    • 2
    • 3
  • J. K. Litton
    • 2
  • N. K. Ibrahim
    • 2
  • P. K. Morrow
    • 2
  • M. Green
    • 2
  • V. Valero
    • 2
  • D. J. Booser
    • 2
  • G. N. Hortobagyi
    • 2
  • B. K. Arun
    • 2
  1. 1.Division of Cancer MedicineThe University of Texas MD Anderson Cancer CenterHoustonUSA
  2. 2.Department of Breast Medical OncologyThe University of Texas MD Anderson Cancer CenterHoustonUSA
  3. 3.Department of BiostatisticsThe University of Texas MD Anderson Cancer CenterHoustonUSA

Personalised recommendations