Clinical & Experimental Metastasis

, Volume 30, Issue 4, pp 507–520 | Cite as

L1CAM stimulates glioma cell motility and proliferation through the fibroblast growth factor receptor

  • Vishnu Mohanan
  • Murali K. Temburni
  • John C. Kappes
  • Deni S. GalileoEmail author
Research Paper


The L1CAM cell adhesion/recognition molecule (L1, CD171) and fibroblast growth factor receptor (FGFR) both are expressed by human high-grade glioma cells, but their potential actions in controlling cell behavior have not been linked. L1 actions in cancer cells have been attributed mainly to integrin receptors, and we demonstrated previously that L1-stimulated glioma cell migration correlates with integrin expression, increased focal adhesion kinase activation and focal complex turnover. Our analyses of datasets revealed FGFR is overexpressed in glioma regardless of grade, while ADAM10 metalloprotease expression increases with glioma grade. Here, we used dominant-negative and short hairpin RNA approaches to inhibit the activation of FGFR1 and expression of L1, respectively. An L1 peptide that inhibits L1-FGFR interaction and PD173074, a chemical inhibitor of FGFR1 activity, also were used to elucidate the involvement of L1-FGFR interactions on glioma cell behavior. Time-lapse cell motility studies and flow cytometry cell cycle analyses showed that L1 operates to increase glioma cell motility and proliferation through FGFR activation. Shutdown of both L1 expression and FGFR activity in glioma cells resulted in a complete termination of cell migration in vitro. These studies show for the first time that soluble L1 ectodomain (L1LE) acts on glioma cells through FGFRs, and that FGFRs are used by glioma cells for increasing motility as well as proliferation in response to activation by L1LE ligand. Thus, effective treatment of high-grade glioma may require simultaneous targeting of L1, FGFRs, and integrin receptors, which would reduce glioma cell motility as well as proliferation.


Glioma Glioblastoma FGFR L1CAM Cell Motility Cell Proliferation 



Fibroblast growth factor receptor


L1 long ectodomain


Glioblastoma multiforme


Fibronectin-like repeats


Cell adhesion molecules


CAM homology domains



The authors would like to thank Dr. Elena Pasquale at the Sanford Burnham Medical Research Institute for the cek-1 plasmid. This work was funded by grant Number 2 P20 RR016472 under the INBRE program of the National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH), and by research resources of the Genetically Defined Microbe and Expression Core of the UAB Mucosal HIV and Immunobiology Center (R24 DK64400).

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10585_2012_9555_MOESM1_ESM.docx (20 kb)
Supplementary material 1 (DOCX 20 kb)
10585_2012_9555_MOESM2_ESM.docx (2.4 mb)
Supplementary material 2 (DOCX 2469 kb)

Supplementary material 3 (AVI 28.3 mb)

Supplementary material 3 (AVI 34 mb)


  1. 1.
    Neuropathol Claes A, Idema AJ, Wesseling P (2007) Diffuse glioma growth: a guerilla war. Acta 114(5):443–458Google Scholar
  2. 2.
    Kleihues P, Soylemezoglu F, Schauble B, Scheithauer BW, Burger PC (1995) Histopathology, classification, and grading of gliomas. Glia 15(3):211–221PubMedCrossRefGoogle Scholar
  3. 3.
    Wen P, Fine HA, Black PM, Shrieve DC, Alexander E, Loeffler JS (1995) High-grade astrocytomas. Neurol Clin 13(4):875–900PubMedGoogle Scholar
  4. 4.
    Bao S, Wu Q, Li Z, Sathornsumetee S, Wang H, McLendon RE, Hjelmeland AB, Rich JN (2008) Targeting cancer stem cells through L1CAM suppresses glioma growth. Cancer Res 68(15):6043–6048PubMedCrossRefGoogle Scholar
  5. 5.
    Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359(5):492–507PubMedCrossRefGoogle Scholar
  6. 6.
    Yuan X, Curtin J, Xiong Y, Liu G, Waschsmann-Hogiu S, Farkas DL, Black KL, Yu JS (2004) Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene 23(58):9392–9400PubMedCrossRefGoogle Scholar
  7. 7.
    Ahluwalia MS, de Groot J, Liu WM, Gladson CL (2010) Targeting SRC in glioblastoma tumors and brain metastases: rationale and preclinical studies. Cancer Lett 298(2):139–149PubMedCrossRefGoogle Scholar
  8. 8.
    Holland EC (2000) Glioblastoma multiforme: the terminator. Proc Natl Acad Sci USA 97(12):6242–6244PubMedCrossRefGoogle Scholar
  9. 9.
    Faissner A, Teplow DB, Kubler D, Keilhauer G, Kinzel V, Schachner M (1985) Biosynthesis and membrane topography of the neural cell adhesion molecule L1. EMBO J 4(12):3105–3113PubMedGoogle Scholar
  10. 10.
    Moos M, Tacke R, Scherner H, Teplow D, Gruth K, Schachner M (1988) Neural adhesion molecule L1 as a member of the immunoglobulin superfamily with binding domains similar to fibronectin. Nature 334(6184):701–703PubMedCrossRefGoogle Scholar
  11. 11.
    Schmid RS, Maness PF (2008) L1 and NCAM adhesion molecules as signaling coreceptors in neuronal migration and process outgrowth. Curr Opin Neurobiol 18(3):245–250PubMedCrossRefGoogle Scholar
  12. 12.
    Herron LR, Hill M, Davey F, Gunn-Moore FJ (2009) The intracellular interactions of the L1 family of cell adhesion molecules. Biochem J 419(3):3–519CrossRefGoogle Scholar
  13. 13.
    Riedle S, Kiefel H, Gast D, Bondong S, Wolterink S, Gutwein P, Altevogt P (2009) Nuclear translocation and signalling of L1-CAM in human carcinoma cells requires ADAM10 and presenilin/gammasecretase activity. Biochem J 420(3):391–402PubMedCrossRefGoogle Scholar
  14. 14.
    Brummendorf T, Kenwrick S, Rathjen FG (1988) Neural cell recognition molecule L1; from cell biology to human hereditary brain malformation. Curr Opin Neurobiol 8(1):87–97CrossRefGoogle Scholar
  15. 15.
    Haspel J, Grumet M (2003) The L1CAM extracellular region: a multidomain protein with modular and cooperative binding modes. Front Biosci 8:s1210–s1225PubMedCrossRefGoogle Scholar
  16. 16.
    Hortsch M (1996) The L1 family of neural cell adhesion molecules: old proteins performing new tricks. Neuron 17(4):587–593PubMedCrossRefGoogle Scholar
  17. 17.
    Gavert N, Ben-Shmuel A, Raveh S, Ben-Ze’ev A (2008) L1-CAM in cancerous tissues. Expert Opin Biol Ther 8(11):1749–1757PubMedCrossRefGoogle Scholar
  18. 18.
    Yang M, Li Y, Chilukuri K, Brady OA, Boulos MI, Kappes JC, Galileo DS (2011) L1 stimulation of human glioma cell motility correlates with FAK activation. J Neurooncol 105(1):27–44PubMedCrossRefGoogle Scholar
  19. 19.
    Zecchini S, Bianchi M, Colombo N, Fasani R, Goisis G, Casadio C, Viale G, Liu J, Herlyn M, Godwin AK, Nuciforo PG, Cavallaro U (2008) The differential role of L1 in ovarian carcinoma and normal ovarian surface epithelium. Cancer Res 68(4):1110–1118PubMedCrossRefGoogle Scholar
  20. 20.
    Li Y, Galileo DS (2010) Soluble L1CAM promotes breast cancer cell adhesion and migration in vitro, but not invasion. Cancer Cell Int 15(10):34CrossRefGoogle Scholar
  21. 21.
    Houssaint E, Blanquet PR, Champion-Arnaud R, Gesnel MC, Torriglia A, Courtois Y, Breathnach R (1990) Related fibroblast growth factor receptor genes exist in the human genome. Proc Natl Acad Sci USA 87(20):8180–8184PubMedCrossRefGoogle Scholar
  22. 22.
    Johnson DE, Lu J, Chen H, Werner S, Williams LT (1991) The human fibroblast growth factor receptor genes: a common structural arrangement underlies the mechanisms for generating receptor forms that differ in their third immunoglobulin domain. Mol Cell Bio 11(9):4627–4634Google Scholar
  23. 23.
    Keegan K, Johnson DE, Williams LT, Hayman MJ (1991) Isolation of additional member of the fibroblast growth factor receptor family, FGFR-3. Proc Natl Acad Sci USA 88(4):1095–1099PubMedCrossRefGoogle Scholar
  24. 24.
    Partanen J, Makela TP, Erola E, Kohonen J, Hirovenen H, Claesson-Welsh L, Alitalo K (1991) FGFR-4, a novel acidic fibroblast growth factor receptor with a distinct expression pattern. EMBO J 10(6):1347–1354PubMedGoogle Scholar
  25. 25.
    McKeehan WL, Wang F, Kan M (1998) The heparan sulfate-fibroblast growth factor family: diversity of structure and function. Prog Nucleic Acid Res Mol Biol 59:135–176PubMedCrossRefGoogle Scholar
  26. 26.
    Doherty P, Walsh FS (1996) CAM-FGF receptor interactions: a model for axonal growth. Mol Cell Neurosci 8(2/3):99–111CrossRefGoogle Scholar
  27. 27.
    Doherty P, Williams E, Walsh FS (1995) A soluble chimeric form of the L1 glycoprotein stimulates neurite outgrowth. Neuron 14(1):57–66PubMedCrossRefGoogle Scholar
  28. 28.
    Williams EJ, Furness J, Walsh FS, Doherty P (1994) Activation of the FGF receptor underlies neurite outgrowth stimulated by L1, N-CAM, and N-cadherin. Neuron 13(3):583–594PubMedCrossRefGoogle Scholar
  29. 29.
    Doherty P, Smith P, Walsh FS (1996) Shared cell adhesion molecule (CAM) homology domains point to CAMs signalling via FGF receptors. Perspect Dev Neurobiol 4(2–3):157–168PubMedGoogle Scholar
  30. 30.
    Hall H, Walsh FS, Doherty P (1996) Review: a role for the FGF receptor in the axonal growth response stimulated by cell adhesion molecules? Cell Adhes Commun 3(6):441–450PubMedCrossRefGoogle Scholar
  31. 31.
    Kulahin N, Li S, Kiselyov V, Bock E, Berezin V (2009) Identification of neural cell adhesion molecule L1-derived neuritigenic ligands of the fibroblast growth factor receptor. J Neurosci Res 87(8):1806–1812PubMedCrossRefGoogle Scholar
  32. 32.
    Kulahin N, Li S, Hinsby A, Kiselyov V, Berezin V, Bock E (2008) Fibronectin type III (FN3) modules of the neuronal cell adhesion molecule L1 interact directly with the fibroblast growth factor (FGF) receptor. Mol Cell Neurosci 37(3):528–536PubMedCrossRefGoogle Scholar
  33. 33.
    Kiselyov VV, Skladchikova G, Hinsby AM, Jensen PH, Kulahin N, Soroka V, Pedersen N, Tsetlin V, Poulsen FM, Berezin V, Bock E (2003) Structural basis for a direct interaction between FGFR1 and NCAM and evidence for a regulatory role of ATP. Structure 11(6):691–701PubMedCrossRefGoogle Scholar
  34. 34.
    Saffell JL, Williams EJ, Mason IJ, Walsh FS, Doherty P (1997) Expression of a dominant negative FGF receptor inhibits axonal growth and FGF receptor phosphorylation stimulated by CAMs. Neuron 18(2):231–242PubMedCrossRefGoogle Scholar
  35. 35.
    Rand V, Huang J, Stockwell T, Ferriera S, Buzko O, Levy S, Busam D, Li K, Edwards JB, Eberhart C, Murphy KM, Tsiamouri A, Beeson K, Simpson AJ, Venter JC, Riggins GJ, Strausberg RL (2005) Sequence survey of receptor tyrosine kinases reveals mutations in glioblastomas. Proc Natl Acad Sci USA 102(40):14344–14349PubMedCrossRefGoogle Scholar
  36. 36.
    Cancer Genome Atlas Research Network (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455(7216):1061–1068CrossRefGoogle Scholar
  37. 37.
    Auguste P, Gürsel DB, Lemière S, Reimers D, Cuevas P, Carceller F, Di Santo JP, Bikfalvi A (2001) Inhibition of fibroblast growth factor/fibroblast growth factor receptor activity in glioma cells impedes tumor growth by both angiogenesis-dependent and -independent mechanisms. Cancer Res 61(4):1717–1726PubMedGoogle Scholar
  38. 38.
    Rousseau B, Larrieu-Lahargue F, Javerzat S, Guilhem-Ducléon F, Beermann F, Bikfalvi A (2004) The tyrp1-Tag/tyrp1-FGFR1-DN bigenic mouse: a model for selective inhibition of tumor development, angiogenesis, and invasion into the neural tissue by blockade of fibroblast growth factor receptor activity. Cancer Res 64(7):2490–2495PubMedCrossRefGoogle Scholar
  39. 39.
    Loilome W, Joshi AD, ap Rhys CM, Piccirillo S, Vescovi AL, Gallia GL, Riggins GJ (2009) Glioblastoma cell growth is suppressed by disruption of fibroblast growth factor pathway signaling. J Neurooncol 94(3):359–366PubMedCrossRefGoogle Scholar
  40. 40.
    Morrison RS, Yamaguchi F, Bruner JM, Tang M, McKeehan W, Berger MS (1994) Fibroblast growth factor receptor gene expression and immunoreactivity are elevated in human glioblastoma multiforme. Cancer Res 54(10):2794–2799PubMedGoogle Scholar
  41. 41.
    Yang M, Adla S, Temburni MK, Patel VP, Lagow EL, Brady OA, Tian J, Boulos MI, Galileo DS (2009) Stimulation of glioma cell motility by expression, proteolysis, and release of the L1 neural cell recognition molecule. Cancer Cell Int 9:27PubMedCrossRefGoogle Scholar
  42. 42.
    Stein GH (1979) T98G: an anchorage-independent human tumor cell line that exhibits stationary phase G1 arrest in vitro. J Cell Physiol 99(1):43–54PubMedCrossRefGoogle Scholar
  43. 43.
    Ponten J, Macintyre EH (1968) Long term culture of normal and neoplastic human glia. Acta Pathol Microbiol Scand 74(4):465–486PubMedCrossRefGoogle Scholar
  44. 44.
    Mohammadi M, Froum S, Hamby JM, Schroeder MC, Panek RL, Lu GH, Eliseenkova AV, Green D, Schlessinger J, Hubbard SR (1998) Crystal structure of an angiogenesis inhibitor bound to the FGF receptor tyrosine kinase domain. EMBO J 17(20):5896–5904PubMedCrossRefGoogle Scholar
  45. 45.
    Bansal R, Magge S, Winkler S (2003) Specific inhibitor of FGF receptor signaling: FGF-2-mediated effects on proliferation, differentiation, and MAPK activation are inhibited by PD173074 in oligodendrocyte-lineage cells. J Neurosci Res 74(4):486–493PubMedCrossRefGoogle Scholar
  46. 46.
    Pasquale EB, Singer SJ (1989) Identification of a developmentally regulated protein-tyrosine kinase by using anti-phosphotyrosine antibodies to screen a cDNA expression library. Proc Natl Acad Sci USA 86(14):5449–5453PubMedCrossRefGoogle Scholar
  47. 47.
    Szymczak AL, Workman CJ, Wang Y, Vignali KM, Dilioglou S, Vanin EF, Vignali DA (2004) Correction of multi-gene deficiency in vivo using a single ‘self-cleaving’ 2A peptide-based retroviral vector. Nat Biotechnol 22(5):589–594PubMedCrossRefGoogle Scholar
  48. 48.
    Chen C, Okayama H (1987) High-efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol 7(8):2745–2752PubMedGoogle Scholar
  49. 49.
    Fotos JS, Patel VP, Karin NJ, Temburni MK, Koh JT, Galileo DS (2006) Automated time-lapse microscopy and high-resolution tracking of cell migration. Cytotechnology 51:7–19PubMedCrossRefGoogle Scholar
  50. 50.
    Ueno H, Gunn M, Dell K, Tseng A Jr, Williams L (1992) A truncated form of fibroblast growth factor receptor 1 inhibits signal transduction by multiple types of fibroblast growth factor receptor. J Biol Chem 267(3):1470–1476PubMedGoogle Scholar
  51. 51.
    Suyama K, Shapiro I, Guttman M, Hazan RB (2002) A signaling pathway leading to metastasis is controlled by N-cadherin and the FGF receptor. Cancer Cell 2(4):301–314PubMedCrossRefGoogle Scholar
  52. 52.
    Wang W, Zhu NL, Chua J, Swenson S, Costa FK, Schmitmeier S, Sosnowski BA, Shichinohe T, Kasahara N, Chen TC (2005) Retargeting of adenoviral vector using basic fibroblast growth factor ligand for malignant glioma gene therapy. J Neurosurg 103(6):1058–1066PubMedCrossRefGoogle Scholar
  53. 53.
    Murphy PR, Knee RS (1995) Basic fibroblast growth factor binding and processing by human glioma cells. Mol Cell Endocrinol 114(1–2):193–203PubMedCrossRefGoogle Scholar
  54. 54.
    Yamada SM, Yamaguchi F, Brown R, Berger MS, Morrison RS (1999) Suppression of glioblastoma cell growth following antisense oligonucleotide-mediated inhibition of fibroblast growth factor receptor expression. Glia 28(1):66–76PubMedCrossRefGoogle Scholar
  55. 55.
    Walton NM, Sutter BM, Chen HX, Chang LJ, Roper SN, Scheffler B, Steindler DA (2006) Derivation and large-scale expansion of multipotent astroglial neural progenitors from adult human brain. Development 133(18):3671–3681PubMedCrossRefGoogle Scholar
  56. 56.
    Morrison RS, Yamaguchi F, Saya H, Bruner JM, Yahanda AM, Donehower LA, Berger M (1994) Basic fibroblast growth factor and fibroblast growth factor receptor I are implicated in the growth of human astrocytomas. J Neurooncol 18(3):207–216PubMedCrossRefGoogle Scholar
  57. 57.
    Witsch E, Sela M, Yarden Y (2010) Roles for growth factors in cancer progression. Physiology 25(2):85–101PubMedCrossRefGoogle Scholar
  58. 58.
    Haglund K, Rusten TE, Stenmark H (2007) Aberrant receptor signaling and trafficking as mechanisms in oncogenesis. Crit Rev Oncog 13(1):39–74PubMedCrossRefGoogle Scholar
  59. 59.
    Wesche J, Haglund K, Haugsten EM (2011) Fibroblast growth factors and their receptors in cancer. Biochem J 437(2):199–213PubMedCrossRefGoogle Scholar
  60. 60.
    Yan G, Fukabori Y, McBride G, Nikolaropolous S, McKeehan W (1993) Exon switching and activation of stromal and embryonic fibroblast growth factor (FGF) FGF receptor genes in prostate epithelial cells accompany stromal independence and malignancy. Mol Cell Biol 13(8):4513–4522PubMedGoogle Scholar
  61. 61.
    Zecchini S, Bombardelli L, Decio A, Bianchi M, Mazzarol G, Sanguineti F, Aletti G, Maddaluno L, Berezin V, Bock E, Casadio C, Viale G, Colombo N, Giavazzi R, Cavallaro U (2011) The adhesion molecule NCAM promotes ovarian cancer progression via FGFR signalling. EMBO Mol Med 3(8):480–494PubMedCrossRefGoogle Scholar
  62. 62.
    Cretu A, Fotos JS, Little BW, Galileo DS (2005) Human and rat glioma growth, invasion, and vascularization in a novel chick embryo brain tumor model. Clin Exper Metastasis 22(3):225–236CrossRefGoogle Scholar
  63. 63.
    Mechtersheimer S, Gutwein P, Agmon-Levin N, Stoeck A, Oleszewski M, Riedle S, Postina R, Fahrenholz F, Fogel M, Lemmon V, Altevogt P (2001) Ectodomain shedding of L1 adhesion molecule promotes cell migration by autocrine binding to integrins. J Cell Biol 155(4):661–673PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Vishnu Mohanan
    • 1
  • Murali K. Temburni
    • 2
  • John C. Kappes
    • 3
  • Deni S. Galileo
    • 1
    Email author
  1. 1.Department of Biological SciencesUniversity of DelawareNewarkDE
  2. 2.Department of Biological SciencesDelaware State UniversityDoverDE
  3. 3.Department of MedicineUniversity of AlabamaBirminghamAL

Personalised recommendations