Clinical & Experimental Metastasis

, Volume 30, Issue 3, pp 251–264 | Cite as

S100P is a metastasis-associated gene that facilitates transendothelial migration of pancreatic cancer cells

  • Sayka Barry
  • Claude Chelala
  • Kate Lines
  • Makoto Sunamura
  • Amu Wang
  • Federica M. Marelli-Berg
  • Caroline Brennan
  • Nicholas R. Lemoine
  • Tatjana Crnogorac-JurcevicEmail author
Research Paper


Pancreatic ductal adenocarcinoma (PDAC) is the 5th most common cause of cancer death in the UK and the 4th in the US. The vast majority of deaths following pancreatic cancer are due to metastatic spread, hence understanding the metastatic process is vital for identification of critically needed novel therapeutic targets. An enriched set of 33 genes differentially expressed in common between primary PDAC and liver metastases, when compared to normal tissues, was obtained through global gene expression profiling. This metastasis-associated gene set comprises transcripts from both cancer (S100P, S100A6, AGR2, etc.) and adjacent stroma (collagens type I, III, and V, etc.), thus reinforcing the concept of a continuous crosstalk between the two compartments in both primary tumours and their metastases. The expression of S100P, SFN, VCAN and collagens was further validated in additional primary PDACs and matched liver metastatic lesions, while the functional significance of one of the most highly expressed genes, S100P, was studied in more detail. We show that this protein increases the transendothelial migration of PDAC cancer cells in vitro, which was also confirmed in vivo experiments using a zebrafish embryo model. Thus S100P facilitates cancer cell intravasation/extravasation, critical steps in the hematogenous dissemination of pancreatic cancer cells.


Pancreatic adenocarcinoma Liver metastasis S100P Transendothelial migration Zebrafish 



We thank G. Elia for help with collagen staining and Prof. I. Hart for critical reading of the manuscript. This work is funded by the Barts and the London Charitable Foundation (SB), Cancer Research UK C355/A6253 (CC, TCJ, NRL) and HEFCE (TCJ). We are grateful to Dr. Iacobuzio-Donahue for kindly providing us with pancreatic cancer primary and liver metastatic samples from the GICRMDP at John Hopkins University, Baltimore, USA.

Conflicts of interest

The authors declare that they have no conflict of interest.

Supplementary material

10585_2012_9532_MOESM1_ESM.pdf (112 kb)
Supplementary Fig. 1 Dendrogram displaying clustering of analysed tissue specimens. It is evident that normal liver (NL1-3, NL2-3 representing technical replicates; all underlined yellow), normal pancreas (N1-3; all underlined blue), pancreatic cancer (P1/2/5/6; underlined violet) and liver metastatic (M1-5; underlined dark blue) samples cluster separately, with normal liver forming the most distant group. The distance between the liver metastases and PDAC was probably potentiated by the fact that the samples were not matched. Of note, out of an initial 12 liver metastatic samples, seven did not pass through the RNA quality control assessments and three out of seven PDAC samples did not pass through the Affymetrix quality control assessment for data analysis and were therefore omitted from further analysis (PDF 111 kb)
10585_2012_9532_MOESM2_ESM.pdf (397 kb)
Supplementary Fig. 2 Collagen expression in normal pancreas and primary PDAC. A Dense, organised collagen fibres are seen surrounding normal ducts and PanIN lesions (I, IV ×50; II, V ×100; III, VI ×200); pancreatic cancer displaying heterogeneous regions with differing amounts of less well organised collagens (VII, X ×50; VIII, XI ×100; IX, XII ×200) (PDF 396 kb)


  1. 1.
    Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T et al (2008) Cancer statistics. CA Cancer J Clin 58(2):71–96PubMedCrossRefGoogle Scholar
  2. 2.
    Kamisawa T, Isawa T, Koike M, Tsuruta K, Okamoto A (1995) Hematogenous metastases of pancreatic ductal carcinoma. Pancreas 11(4):345–349PubMedCrossRefGoogle Scholar
  3. 3.
    Yachida S, Jones S, Bozic I, Antal T, Leary R, Fu B et al (2010) Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 467(7319):1114–1117PubMedCrossRefGoogle Scholar
  4. 4.
    Niedergethmann M, Alves F, Neff JK, Heidrich B, Aramin N, Li L et al (2007) Gene expression profiling of liver metastases and tumour invasion in pancreatic cancer using an orthotopic SCID mouse model. Br J Cancer 97(10):1432–1440PubMedCrossRefGoogle Scholar
  5. 5.
    Campagna D, Cope L, Lakkur SS, Henderson C, Laheru D, Iacobuzio-Donahue CA (2008) Gene expression profiles associated with advanced pancreatic cancer. Int J Clin Exp Pathol 1(1):32–43PubMedGoogle Scholar
  6. 6.
    Inamura K, Shimoji T, Ninomiya H, Hiramatsu M, Okui M, Satoh Y et al (2007) A metastatic signature in entire lung adenocarcinomas irrespective of morphological heterogeneity. Hum Pathol 38(5):702–709PubMedCrossRefGoogle Scholar
  7. 7.
    Ellsworth RE, Seebach J, Field LA, Heckman C, Kane J, Hooke JA et al (2009) A gene expression signature that defines breast cancer metastases. Clin Exp Metastasis 26(3):205–213PubMedCrossRefGoogle Scholar
  8. 8.
    D’Arrigo A, Belluco C, Ambrosi A, Digito M, Esposito G, Bertola A et al (2005) Metastatic transcriptional pattern revealed by gene expression profiling in primary colorectal carcinoma. Int J Cancer 115(2):256–262PubMedCrossRefGoogle Scholar
  9. 9.
    Arumugam T, Simeone DM, Van Golen K, Logsdon CD (2005) S100P promotes pancreatic cancer growth, survival, and invasion. Clin Cancer Res 11(15):5356–5364PubMedCrossRefGoogle Scholar
  10. 10.
    Whiteman HJ, Weeks ME, Dowen SE, Barry S, Timms JF, Lemoine NR et al (2007) The role of S100P in the invasion of pancreatic cancer cells is mediated through cytoskeletal changes and regulation of cathepsin D. Cancer Res 67(18):8633–8642PubMedCrossRefGoogle Scholar
  11. 11.
    Embuscado EE, Laheru D, Ricci F, Yun KJ, de Boom Witzel S, Seigel A et al (2005) Immortalizing the complexity of cancer metastasis: genetic features of lethal metastatic pancreatic cancer obtained from rapid autopsy. Cancer Biol Ther 4(5):548–554PubMedCrossRefGoogle Scholar
  12. 12.
    Smyth GK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3:Article3Google Scholar
  13. 13.
    Smyth GK, Michaud J, Scott HS (2005) Use of within-array replicate spots for assessing differential expression in microarray experiments. Bioinformatics 21(9):2067–2075PubMedCrossRefGoogle Scholar
  14. 14.
    Neesse A, Gangeswaran R, Luettges J, Feakins R, Weeks ME, Lemoine NR et al (2007) Sperm-associated antigen 1 is expressed early in pancreatic tumorigenesis and promotes motility of cancer cells. Oncogene 26(11):1533–1545PubMedCrossRefGoogle Scholar
  15. 15.
    Dumartin L, Whiteman HJ, Weeks ME, Hariharan D, Dmitrovic B, Iacobuzio-Donahue CA et al (2011) AGR2 is a novel surface antigen that promotes the dissemination of pancreatic cancer cells through regulation of cathepsins B and D. Cancer Res 71(22):7091–7102Google Scholar
  16. 16.
    Maitra A, Adsay NV, Argani P, Iacobuzio-Donahue C, De Marzo A, Cameron JL et al (2003) Multicomponent analysis of the pancreatic adenocarcinoma progression model using a pancreatic intraepithelial neoplasia tissue microarray. Mod Pathol 16(9):902–912PubMedCrossRefGoogle Scholar
  17. 17.
    Iacobuzio-Donahue CA, Maitra A, Olsen M, Lowe AW, van Heek NT, Rosty C et al (2003) Exploration of global gene expression patterns in pancreatic adenocarcinoma using cDNA microarrays. Am J Pathol 162(4):1151–1162PubMedCrossRefGoogle Scholar
  18. 18.
    Naidoo K, Jones R, Dmitrovic B, Wijesuriya N, Kocher H, Hart IR et al (2011) Proteome of formalin-fixed paraffin-embedded pancreatic ductal adenocarcinoma and lymph node metastases. J Pathol 226(5):756–763Google Scholar
  19. 19.
    Guweidhi A, Kleeff J, Giese N, El Fitori J, Ketterer K, Giese T et al (2004) Enhanced expression of 14-3-3sigma in pancreatic cancer and its role in cell cycle regulation and apoptosis. Carcinogenesis 25(9):1575–1585PubMedCrossRefGoogle Scholar
  20. 20.
    Nakajima Shimooka H, Weixa P, Segawa A, Motegi A, Jian Z et al (2003) Immunohistochemical demonstration of 14–3-3 sigma protein in normal human tissues and lung cancers, and the preponderance of its strong expression in epithelial cells of squamous cell lineage. Pathol Int 53(6):353–360CrossRefGoogle Scholar
  21. 21.
    Crnogorac-Jurcevic T, Efthimiou E, Capelli P, Blaveri E, Baron A, Terris B et al (2001) Gene expression profiles of pancreatic cancer and stromal desmoplasia. Oncogene 20(50):7437–7446PubMedCrossRefGoogle Scholar
  22. 22.
    Crnogorac-Jurcevic T, Missiaglia E, Blaveri E, Gangeswaran R, Jones M, Terris B et al (2003) Molecular alterations in pancreatic carcinoma: expression profiling shows that dysregulated expression of S100 genes is highly prevalent. J Pathol 201(1):63–74PubMedCrossRefGoogle Scholar
  23. 23.
    Parkkila S, Pan PW, Ward A, Gibadulinova A, Oveckova I, Pastorekova S et al (2008) The calcium-binding protein S100P in normal and malignant human tissues. BMC Clin Pathol 8:2PubMedCrossRefGoogle Scholar
  24. 24.
    Sitek B, Sipos B, Alkatout I, Poschmann G, Stephan C, Schulenborg T et al (2009) Analysis of the pancreatic tumor progression by a quantitative proteomic approach and immunohistochemical validation. J Proteome Res 8(4):1647–1656PubMedCrossRefGoogle Scholar
  25. 25.
    Buchholz M, Braun M, Heidenblut A, Kestler HA, Kloppel G, Schmiegel W et al (2005) Transcriptome analysis of microdissected pancreatic intraepithelial neoplastic lesions. Oncogene 24(44):6626–6636PubMedCrossRefGoogle Scholar
  26. 26.
    van ‘t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415(6871):530–536CrossRefGoogle Scholar
  27. 27.
    Weigelt B, Glas AM, Wessels LF, Witteveen AT, Peterse JL, van’t Veer LJ (2003) Gene expression profiles of primary breast tumors maintained in distant metastases. Proc Natl Acad Sci USA 100(26):15901–15905PubMedCrossRefGoogle Scholar
  28. 28.
    Ramaswamy S, Ross KN, Lander ES, Golub TR (2003) A molecular signature of metastasis in primary solid tumors. Nat Genet 33(1):49–54PubMedCrossRefGoogle Scholar
  29. 29.
    Vimalachandran D, Greenhalf W, Thompson C, Luttges J, Prime W, Campbell F et al (2005) High nuclear S100A6 (Calcyclin) is significantly associated with poor survival in pancreatic cancer patients. Cancer Res 65(8):3218–3225PubMedGoogle Scholar
  30. 30.
    Ohuchida K, Mizumoto K, Ishikawa N, Fujii K, Konomi H, Nagai E et al (2005) The role of S100A6 in pancreatic cancer development and its clinical implication as a diagnostic marker and therapeutic target. Clin Cancer Res 11(21):7785–7793PubMedCrossRefGoogle Scholar
  31. 31.
    Ramachandran V, Arumugam T, Wang H, Logsdon CD (2008) Anterior gradient 2 is expressed and secreted during the development of pancreatic cancer and promotes cancer cell survival. Cancer Res 68(19):7811–7818PubMedCrossRefGoogle Scholar
  32. 32.
    Ricciardelli C, Sakko AJ, Ween MP, Russell DL, Horsfall DJ (2009) The biological role and regulation of versican levels in cancer. Cancer Metastasis Rev 28(1–2):233–245PubMedCrossRefGoogle Scholar
  33. 33.
    Mauri P, Scarpa A, Nascimbeni AC, Benazzi L, Parmagnani E, Mafficini A et al (2005) Identification of proteins released by pancreatic cancer cells by multidimensional protein identification technology: a strategy for identification of novel cancer markers. FASEB J 19(9):1125–1127PubMedGoogle Scholar
  34. 34.
    Skandalis SS, Kletsas D, Kyriakopoulou D, Stavropoulos M, Theocharis DA (2006) The greatly increased amounts of accumulated versican and decorin with specific post-translational modifications may be closely associated with the malignant phenotype of pancreatic cancer. Biochim Biophys Acta 1760(8):1217–1225PubMedCrossRefGoogle Scholar
  35. 35.
    Sakko AJ, Ricciardelli C, Mayne K, Suwiwat S, LeBaron RG, Marshall VR et al (2003) Modulation of prostate cancer cell attachment to matrix by versican. Cancer Res 63(16):4786–4791PubMedGoogle Scholar
  36. 36.
    Gress TM, Muller-Pillasch F, Lerch MM, Friess H, Buchler M, Adler G (1995) Expression and in situ localization of genes coding for extracellular matrix proteins and extracellular matrix degrading proteases in pancreatic cancer. Int J Cancer 62(4):407–413PubMedCrossRefGoogle Scholar
  37. 37.
    Menke A, Philippi C, Vogelmann R, Seidel B, Lutz MP, Adler G et al (2001) Down-regulation of E-cadherin gene expression by collagen type I and type III in pancreatic cancer cell lines. Cancer Res 61(8):3508–3517PubMedGoogle Scholar
  38. 38.
    Shintani Y, Hollingsworth MA, Wheelock MJ, Johnson KR (2006) Collagen I promotes metastasis in pancreatic cancer by activating c-Jun NH(2)-terminal kinase 1 and up-regulating N-cadherin expression. Cancer Res 66(24):11745–11753PubMedCrossRefGoogle Scholar
  39. 39.
    Hwang RF, Moore T, Arumugam T, Ramachandran V, Amos KD, Rivera A et al (2008) Cancer-associated stromal fibroblasts promote pancreatic tumor progression. Cancer Res 68(3):918–926PubMedCrossRefGoogle Scholar
  40. 40.
    Xu Z, Vonlaufen A, Phillips PA, Fiala-Beer E, Zhang X, Yang L et al (2010) Role of pancreatic stellate cells in pancreatic cancer metastasis. Am J Pathol 177(5):2585–2596PubMedCrossRefGoogle Scholar
  41. 41.
    Albini A, Mirisola V, Pfeffer U (2008) Metastasis signatures: genes regulating tumor-microenvironment interactions predict metastatic behavior. Cancer Metastasis Rev 27(1):75–83PubMedCrossRefGoogle Scholar
  42. 42.
    Provenzano PP, Inman DR, Eliceiri KW, Knittel JG, Yan L, Rueden CT et al (2008) Collagen density promotes mammary tumor initiation and progression. BMC Med 6:11PubMedCrossRefGoogle Scholar
  43. 43.
    Erkan M, Michalski CW, Rieder S, Reiser-Erkan C, Abiatari I, Kolb A et al (2008) The activated stroma index is a novel and independent prognostic marker in pancreatic ductal adenocarcinoma. Clin Gastroenterol Hepatol 6(10):1155–1161PubMedCrossRefGoogle Scholar
  44. 44.
    Wang G, Platt-Higgins A, Carroll J, de Silva Rudland S, Winstanley J, Barraclough R et al (2006) Induction of metastasis by S100P in a rat mammary model and its association with poor survival of breast cancer patients. Cancer Res 66(2):1199–1207PubMedCrossRefGoogle Scholar
  45. 45.
    Diederichs S, Bulk E, Steffen B, Ji P, Tickenbrock L, Lang K et al (2004) S100 family members and trypsinogens are predictors of distant metastasis and survival in early-stage non-small cell lung cancer. Cancer Res 64(16):5564–5569PubMedCrossRefGoogle Scholar
  46. 46.
    Bulk E, Hascher A, Liersch R, Mesters RM, Diederichs S, Sargin B et al (2008) Adjuvant therapy with small hairpin RNA interference prevents non-small cell lung cancer metastasis development in mice. Cancer Res 68(6):1896–1904PubMedCrossRefGoogle Scholar
  47. 47.
    Austermann J, Nazmi AR, Muller-Tidow C, Gerke V (2008) Characterization of the Ca2+—regulated ezrin–S100P interaction and its role in tumor cell migration. J Biol Chem 283(43):29331–29340PubMedCrossRefGoogle Scholar
  48. 48.
    Koltzscher M, Neumann C, Konig S, Gerke V (2003) Ca2+—dependent binding and activation of dormant ezrin by dimeric S100P. Mol Biol Cell 14(6):2372–2384PubMedCrossRefGoogle Scholar
  49. 49.
    Marques IJ, Weiss FU, Vlecken DH, Nitsche C, Bakkers J, Lagendijk AK et al (2009) Metastatic behaviour of primary human tumours in a zebrafish xenotransplantation model. BMC Cancer 9:128PubMedCrossRefGoogle Scholar
  50. 50.
    Goessling W, North TE, Zon LI (2007) New waves of discovery: modeling cancer in zebrafish. J Clin Oncol 25(17):2473–2479PubMedCrossRefGoogle Scholar
  51. 51.
    Stoletov K, Montel V, Lester RD, Gonias SL, Klemke R (2007) High-resolution imaging of the dynamic tumor cell vascular interface in transparent zebrafish. Proc Natl Acad Sci USA 104(44):17406–17411PubMedCrossRefGoogle Scholar
  52. 52.
    Nguyen DX, Bos PD, Massague J (2009) Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 9(4):274–284PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Sayka Barry
    • 1
  • Claude Chelala
    • 1
  • Kate Lines
    • 1
  • Makoto Sunamura
    • 2
  • Amu Wang
    • 3
  • Federica M. Marelli-Berg
    • 4
  • Caroline Brennan
    • 5
  • Nicholas R. Lemoine
    • 1
  • Tatjana Crnogorac-Jurcevic
    • 1
    Email author
  1. 1.Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of LondonLondonUK
  2. 2.First Department of SurgeryTohoku University School of MedicineSendaiJapan
  3. 3.Immunology DepartmentImperial CollegeLondonUK
  4. 4.Centre for Biochemical PharmacologyWilliam Harvey Heart Centre, Barts and the London SMD, Queen Mary University of LondonLondonUK
  5. 5.School of Biological Sciences, Queen Mary University of LondonLondonUK

Personalised recommendations