Clinical & Experimental Metastasis

, Volume 29, Issue 7, pp 747–756

Epigenetics of regional lymph node metastasis in solid tumors

Research Paper

Abstract

Regional nodal status remains one of the most important prognostic factors in several solid tumors including melanoma, breast cancer, and gastrointestinal malignancies. However, despite the accuracy of lymph node (LN) staging, patients who are LN negative are still at risk for development of recurrence and distant metastasis. As such, numerous molecular studies have focused on genetic and transcriptome changes in primary and metastatic tumors to discover molecular determinants that can predict aggressive metastatic disease and/or correlated to clinical outcomes. More recently, epigenetic aberrations have been investigated in solid cancers and are associated with tumorigenesis and disease progression. These epigenetic alterations have demonstrated potential utility as diagnostic and prognostic biomarkers and are being developed into novel targeted treatment strategies, as epigenetic changes can be reversed by appropriate drugs. If patients who are at increased risk of developing metastases or recurrence can be accurately identified, this will help stratify patients into more appropriate treatment and follow-up. This review discusses some of the recent studies on regional LN metastases in melanoma, breast cancer, and colorectal cancer, focusing on the potential clinicopathological utility of epigenetic aberrations in the management of cancer patients.

Keywords

Methylation microRNA Lymph node Biomarker Melanoma Breast cancer 

References

  1. 1.
    Tanemura A, Terando AM, Sim M-S, van Hoesel AQ, de Maat MFG, Morton DL, Hoon DSB (2009) CpG island methylator phenotype predicts progression of malignant melanoma. Clin Cancer Res 15:1801–1807PubMedCrossRefGoogle Scholar
  2. 2.
    Shinozaki M, Hoon DSB, Giuliano AE, Hansen NM, Wang H-J, Turner R, Taback B (2005) Distinct hypermethylation profile of primary breast cancer is associated with sentinel lymph node metastasis. Clin Cancer Res 11:2156–2162PubMedCrossRefGoogle Scholar
  3. 3.
    de Maat MFG, van de Velde CJH, Benard A, Putter H, Morreau H, van Krieken JHJM, Klein-Kranenbarg EM, de Graaf EJ, Tollenaar RAEM, Hoon DSB (2010) Identification of a quantitative MINT locus methylation profile predicting local regional recurrence of rectal cancer. Clin Cancer Res 16:2811–2818PubMedCrossRefGoogle Scholar
  4. 4.
    Nguyen T, Kuo C, Nicholl MB, Sim M-S, Turner RR, Morton DL, Hoon DSB (2011) Downregulation of microRNA-29c is associated with hypermethylation of tumor-related genes and disease outcome in cutaneous melanoma. Epigenetics 6:388–394PubMedCrossRefGoogle Scholar
  5. 5.
    Hoshimoto S, Kuo CT, Chong KK, Takeshima T-L, Takei Y, Li MW, Huang SK, Sim M-S, Morton DL, Hoon DSB (2012) AIM1 and LINE-1 epigenetic aberrations in tumor and serum relate to melanoma progression and disease outcome. J Invest Dermatol. doi:10.1038/jid.2012.36 PubMedGoogle Scholar
  6. 6.
    Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell 128:683–692PubMedCrossRefGoogle Scholar
  7. 7.
    Gal-Yam EN, Saito Y, Egger G, Jones PA (2008) Cancer epigenetics: modifications, screening, and therapy. Annu Rev Med 59:267–280PubMedCrossRefGoogle Scholar
  8. 8.
    Kunej T, Godnic I, Ferdin J, Horvat S, Dovc P, Calin GA (2011) Epigenetic regulation of microRNAs in cancer: an integrated review of literature. Mutat Res 717:77–84PubMedCrossRefGoogle Scholar
  9. 9.
    Esteller M (2008) Epigenetics in cancer. N Engl J Med 358:1148–1159PubMedCrossRefGoogle Scholar
  10. 10.
    Davis BN, Hata A (2010) microRNA in cancer-the involvement of aberrant microRNA biogenesis regulatory pathways. Genes Cancer 1:1100–1114CrossRefGoogle Scholar
  11. 11.
    Fabbri M, Ivan M, Cimmino A, Negrini M, Calin GA (2007) Regulatory mechanisms of microRNAs involvement in cancer. Expert Opin Biol Ther 7:1009–1019PubMedCrossRefGoogle Scholar
  12. 12.
    Lujambio A, Ropero S, Ballestar E, Fraga MF, Cerrato C, Setien F, Casado S, Suarez-Gauthier A, Sanchez-Cespedes M, Git A, Spiteri I, Das PP, Caldas C, Miska E, Esteller M (2007) Genetic unmasking of an epigenetically silenced mRNA in human cancer cells. Cancer Res 67:1424–1429PubMedCrossRefGoogle Scholar
  13. 13.
    Howell PM Jr, Liu S, Ren S, Behlen C, Fodstad O, Riker AI (2009) Epigenetics in human melanoma. Cancer Control 16:200–218PubMedGoogle Scholar
  14. 14.
    Li Q, Chen H (2011) Epigenetic modifications of metastasis suppressor genes in colon cancer metastasis. Epigenetics 6:849–852PubMedCrossRefGoogle Scholar
  15. 15.
    Jovanovic J, Ronneberg JA, Tost J, Kristensen V (2010) The epigenetics of breast cancer. Mol Oncol 4:242–254PubMedCrossRefGoogle Scholar
  16. 16.
    Leong SPL, Zuber M, Ferris R, Kitagawa Y, Cabanas R, Levenback C, Faries M, Saha S (2011) Impact of nodal status and tumor burden in sentinel lymph nodes on the clinical outcomes of cancer patients. J Surg Oncol 103:518–530PubMedCrossRefGoogle Scholar
  17. 17.
    Morton DL, Wen DR, Wong JH, Economou JS, Cagle LA, Storm FK, Foshag LJ, Cochrane AJ (1992) Technical details of intraoperative lymphatic mapping for early stage melanoma. Arch Surg 127:392–399PubMedCrossRefGoogle Scholar
  18. 18.
    Giuliano AE, Dale PS, Turner RR, Morton DL, Evans SW, Krasne DL (1995) Improved axillary staging of breast cancer with sentinel lymphadenectomy. Ann Surg 222:394–399PubMedCrossRefGoogle Scholar
  19. 19.
    Civantos FJ, Zitsch RP, Schuller DE, Agrawal A, Smith RB, Nason R, Petruzelli G, Gourin CG, Wong RJ, Ferris RJ, El Naggar A, Ridge JA, Paniello RC, Owzar K, McCall L, Chepeha DB, Yarbrough WG, Myers JN (2010) Sentinel lymph node biopsy accurately stages the regional lymph nodes for T1–T2 oral squamous cell carcinomas: results of a prospective multi-institutional trial. J Clin Oncol 28:1395–1400PubMedCrossRefGoogle Scholar
  20. 20.
    Bilchik AJ, Nora D, Tollenaar RA, van de Velde CJ, Wood T, Turner R, Morton DL, Hoon DS (2002) Ultrastaging of early colon cancer using lymphatic mapping and molecular analysis. Eur J Cancer 38:977–985PubMedCrossRefGoogle Scholar
  21. 21.
    Cabanas RM (2009) Micrometastasis of genitourinary cancer to sentinel lymph nodes. In: Leong SPL (ed) Current clinical oncology: from local invasion to metastatic cancer. Humana Press/Springer, London, pp 347–359Google Scholar
  22. 22.
    Morton DL, Thompson JF, Cochran AJ, Mozzillo N, Elashoff R, Essner R, Nieweg OE, Roses DF, Hoekstra HJ, Karakousis CP, Reintgen DS, Coventry BJ, Glass EC, Wang HJ, MSLT group (2006) Sentinel-node biopsy or nodal observation in melanoma. N Engl J Med 355:1307–1317PubMedCrossRefGoogle Scholar
  23. 23.
    Giuliano AE, Hawes D, Ballman KV, Whitworth PW, Blumencranz PW, Reintgen DS, Morrow M, Leitch AM, Hunt KK, McCall LM, Abati A, Cote R (2011) Association of occult metastases in sentinel lymph nodes and bone marrow with survival among women with early-stage invasive breast cancer. JAMA 306:385–393PubMedCrossRefGoogle Scholar
  24. 24.
    Viehl CT, Guller U, Cecini R, Langer I, Ochsner A, Terracciano L, Riehle HM, Laffer U, Oertli D, Zuber M (2012) Sentinel lymph node procedure leads to upstaging of patients with resectable colon cancer: results of the Swiss prospective, multicenter study sentinel lymph node procedure in colon cancer. Ann Surg Oncol 19(6):1959–65Google Scholar
  25. 25.
    Nicholl MB, Elashoff D, Takeuchi H, Morton DL, Hoon DS (2011) Molecular upstaging based on paraffin-embedded sentinel lymph nodes: ten-year follow-up confirms prognostic utility in melanoma patients. Ann Surg 253:116–122PubMedCrossRefGoogle Scholar
  26. 26.
    Martinez SR, Mori T, Hoon DS (2006) Molecular upstaging of sentinel lymph nodes in melanoma: Where are we now? Surg Oncol Clin N Am 15:331–340PubMedCrossRefGoogle Scholar
  27. 27.
    Koyanagi K, Bilchik AJ, Saha S, Turner RR, Wiese D, McCarter M, Shen P, Deacon L, Elashoff D, Hoon DS (2008) Prognostic relevance of occult nodal micrometastases and circulating tumor cells in colorectal cancer in a prospective multicenter trial. Clin Cancer Res 14:7391–7396PubMedCrossRefGoogle Scholar
  28. 28.
    Leong SP (2004) Sentinel lymph node mapping and selective lymphadenectomy: the standard of care for melanoma. Curr Treat Options Oncol 5:185–194PubMedCrossRefGoogle Scholar
  29. 29.
    Howlader N, Noone AM, Krapcho M, Neyman N, Aminou R, Waldron W, Altekruse SF, Kosary CL, Ruhl J, Tatalovich Z, Cho H, Mariotto A, Eisner MP, Lewis DR, Chen HS, Feuer EJ, Cronin KA, Edwards BK (2011) SEER Cancer Statistics Review, 1975–2008. National Cancer Institute, Bethesda. http://seer.cancer.gov/csr/1975_2008/ (based on November 2010 SEER data submission, posted to the SEER web site, 2011)
  30. 30.
    Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa JP (1999) CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci USA 96:8681–8686PubMedCrossRefGoogle Scholar
  31. 31.
    Carmona FJ, Villanueva A, Vidal A, Munoz C, Puertas S, Penin RM, Goma M, Lujambio A, Piulats JM, Mesia R, Sanchez-Cespedes M, Manos M, Condom E, Eccles SA, Esteller M (2012) Epigenetic disruption of Cadherin-11 in human cancer metastasis. J Pathol doi:10.1002/path.4011
  32. 32.
    Jeanes A, Gottardi CJ, Yap AS (2008) Cadherins and cancer: how does cadherin dysfunction promote tumor progression? Oncogene 27:6920–6929PubMedCrossRefGoogle Scholar
  33. 33.
    Yang AS, Estecio MR, Doshi K, Kondo Y, Tajara EH, Issa JP (2004) A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. Nucleic Acids Res 32:e38PubMedCrossRefGoogle Scholar
  34. 34.
    Cho NY, Kim JH, Moon KC, Kang GH (2009) Genomic hypomethylation and CpG island hypermethylation in prostatic intraepithelial neoplasm. Virchows Arch 454:17–23PubMedCrossRefGoogle Scholar
  35. 35.
    Park SY, Yoo EJ, Cho NY, Kim N, Kang GH (2009) Comparison of CpG island hypermethylation and repetitive DNA hypomethylation in premalignant stages of gastric cancer, stratified for Helicobacter pylori infection. J Pathol 219:410–416PubMedCrossRefGoogle Scholar
  36. 36.
    Sunami E, de Maat M, Vu A, Turner RR, Hoon DSB (2011) LINE-1 hypomethylation during primary colon cancer progression. PLoS ONE 6:e18884PubMedCrossRefGoogle Scholar
  37. 37.
    Ogino S, Nosho K, Kirkner GJ, Kawasaki T, Chan AT, Schernhammer ES, Giovannucci EL, Fuchs CS (2008) A cohort study of tumoral LINE-1 hypomethylation and prognosis in colon cancer. J Natl Cancer Inst 100:1734–1738PubMedCrossRefGoogle Scholar
  38. 38.
    Morton DL, Cochran AJ, Thompson JF, Elashoff R, Essner R, Glass EC, Mozzillo N, Nieweg OE, Roses DF, Hoekstra HJ, Karakousis CP, Reintgen DS, Coventry BJ, Wang JH, Multicenter Selective Lymphadenectomy Trial Group (2005) Sentinel node biopsy for early-stage melanoma: accuracy and morbidity in MSLT-I, an international multicenter trial. Ann Surg 242:302–311Google Scholar
  39. 39.
    Livestro DP, Kaine EM, Michaelson JS, Mihm MC, Haluska FG, Muzikansky A, Sober AJ, Tanabe KK (2007) Melanoma in the young: differences and similarities with adult melanoma: a case-matched controlled analysis. Cancer 110:614–624PubMedCrossRefGoogle Scholar
  40. 40.
    Howman-Giles R, Shaw HM, Scolyer RA, Murali R, Wilmott J, McCarthy SW, Uren RF, Thompson JF (2010) Sentinel lymph node biopsy in pediatric and adolescent cutaneous melanoma patients. Ann Surg Oncol 17:138–143PubMedCrossRefGoogle Scholar
  41. 41.
    Sassen S, Shaw HM, Colman MH, Scolyer RA, Thompson JF (2008) The complex relationships between sentinel node positivity, patient age, and primary tumor desmoplasia: analysis of 2303 melanoma patients treated at a single center. Ann Surg Oncol 15:630–637PubMedCrossRefGoogle Scholar
  42. 42.
    Huynh KT, Takei Y, Kuo C, Scolyer RA, Murali R, Chong K, Takeshima L, Sim MS, Morton DL, Turner RR, Thompson JF, Hoon DS (2012) Aberrant hypermethylation in primary and sentinel lymph node metastases in pediatric cutaneous melanoma patients. Br J Dermatol doi:10.1111/j.1365-2133.2012.10867.x
  43. 43.
    Portela A, Esteller M (2010) Epigenetic modifications and human disease. Nat Biotechnol 28:1057–1068PubMedCrossRefGoogle Scholar
  44. 44.
    Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E, Liu S, Alder H, Costinean S, Fernandez-Cymering C, Volinia S, Guler G, Morrison CD, Chan KK, Marcucci G, Calin GA, Huebner K, Croce CM (2007) Micro-RNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci USA 104:15805–15810PubMedCrossRefGoogle Scholar
  45. 45.
    Xiong Y, Fang JH, Yun JP, Yang J, Zhang Y, Jia WH, Zhuang SM (2010) Effects of MicroRNA-29 on apoptosis, tumorigenicity and prognosis of hepatocellular carcinoma. Hepatology 51:836–845PubMedGoogle Scholar
  46. 46.
    Pass HI, Goparaju C, Ivanov S, Donington J, Carbone M, Hoshen M, Cohen D, Chajut A, Rosenwald S, Dan H, Benjamin S, Aharonov R (2010) hsa-miR-29c* is linked to the prognosis of malignant pleural mesothelioma. Cancer Res 70:1916–1924PubMedCrossRefGoogle Scholar
  47. 47.
    Kitago M, Martinez SR, Nakamura T, Sim M-S, Hoon DSB (2009) Regulation of RUNX3 tumor suppressor gene expression in cutaneous melanoma. Clin Cancer Res 15:2988–2994PubMedCrossRefGoogle Scholar
  48. 48.
    Ito Y (2004) Oncogenic potential of the RUNX gene family: overview. Oncogene 23:4198–4208PubMedCrossRefGoogle Scholar
  49. 49.
    Li J, Kleeff J, Guweidhi A, Esposito I, Berberat PO, Giese T, Buchler MW, Friess H (2004) RUNX3 expression in primary and metastatic pancreatic cancer. J Clin Pathol 57:294–299PubMedCrossRefGoogle Scholar
  50. 50.
    Li QL, Ito K, Sakakura C, Fukamachi H, Inoue K, Chi XZ, Lee KY, Normura S, Lee CW, Han SB, Kim HM, Kim WJ, Yamamoto H, Yamashita N, Yano T, Ikeda T, Itohara S, Inazawa J, Abe T, Hagiwara A, Yamagishi H, Ooe A, Kaneda A, Sugimura T, Ushijima T, Bae SC, Ito Y (2002) Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell 109:113–124PubMedCrossRefGoogle Scholar
  51. 51.
    Fisher B, Anderson S, Bryant J, Margolese RG, Deutsch M, Fisher ER, Jeong JH, Wolmark N (2002) Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer. N Engl J Med 347:1233–1241PubMedCrossRefGoogle Scholar
  52. 52.
    Giuliano AE, Hunt KK, Ballman KV, Beitsch PD, Whitmore PW, Blumencranz PW, Leitch AM, Saha S, McCall LM, Morrow M (2011) Axillary dissection vs no axillary dissection in women with invasive breast cancer and sentinel node metastasis: a randomized clinical trial. JAMA 9:569–575CrossRefGoogle Scholar
  53. 53.
    Hansen NM, Grube B, Ye X, Turner RR, Brenner J, Sim M-S, Giuliano AE (2009) Impact of micrometastases in the sentinel node of patients with invasive breast cancer. J Clin Oncol 27:4679–4684PubMedCrossRefGoogle Scholar
  54. 54.
    Maaskant-Braat AJ, van de Poll-Franse LV, Voogd AC, Coebergh JW, Roumen RM, Nolthenius-Puylaert MC, Nieuwenhuijzen GA (2011) Sentinel node micrometastases in breast cancer do not affect prognosis: a population-based study. Breast Cancer Res Treat 127:195–203PubMedCrossRefGoogle Scholar
  55. 55.
    Umetani N, Mori T, Koyanagi K, Shinozaki M, Kim J, Giuliano AE, Hoon DSB (2005) Aberrant hypermethylation of ID4 gene promoter region increases risk of lymph node metastasis in T1 breast cancer. Oncogene 24:4721–4727PubMedCrossRefGoogle Scholar
  56. 56.
    Hazan RB, Qiao R, Keren R, Badano I, Suyama K (2004) Cadherin switch in tumor progression. Ann N Y Acad Sci 1014:155–163PubMedCrossRefGoogle Scholar
  57. 57.
    Droufakou S, Deshmane V, Roylance R, Hanby A, Tomlinson I, Hart IR (2001) Multiple ways of silencing E-cadherin gene expression in lobular carcinoma of the breast. Int J Cancer 92:404–408PubMedCrossRefGoogle Scholar
  58. 58.
    Caldeira JR, Prando EC, Quevedo FC, Neto FA, Rainho CA, Rogatto SR (2006) CDH1 promoter hypermethylation and E-cadherin protein expression in infiltrating breast cancer. BMC Cancer 6:48. doi:10.1186/1471-2407-6-48 PubMedCrossRefGoogle Scholar
  59. 59.
    Zou D, Yoon HS, Perez D, Weeks RJ, Giulford P, Humar B (2009) Epigenetic silencing in non-neoplastic epithelia identifies E-cadherin (CDH1) as a target for chemoprevention of lobular neoplasia. J Pathol 218:265–272PubMedCrossRefGoogle Scholar
  60. 60.
    Feng W, Orlandi R, Zhao N, Carcangiu ML, Tagliabue E, Xu J, Bast RC Jr, Yu Y (2010) Tumor suppressor genes are frequently methylated in lymph node metastases of breast cancers. BMC Cancer 10:378PubMedCrossRefGoogle Scholar
  61. 61.
    Hoon DS, Ferris R, Tanaka R, Chong KK, Alix-Panabieres C, Pantel K (2011) Molecular mechanisms of metastasis. J Surg Oncol 103:508–517PubMedCrossRefGoogle Scholar
  62. 62.
    Bilchik AJ, Saha S, Wiese D, Stonecypher JA, Wood TF, Sostrin S, Turner RR, Wang HJ, Morton DL, Hoon DS (2001) Molecular staging of early colon cancer on the basis of sentinel node analysis: a multicenter phase II trial. J Clin Oncol 19:1128–1136PubMedGoogle Scholar
  63. 63.
    Chen SL, Bilchik AJ (2006) More extensive nodal dissection improves survival for stages I to III colon cancer: a population based study. Ann Surg 244:602–610PubMedGoogle Scholar
  64. 64.
    Andre T, Boni C, Mounedji-Boudiaf L, Navarro M, Tabernero J, Hickish T, Topham C, Zaninelli M, Clingan P, Bridgewater J, Tabah-Fisch I, de Gramont A, Multicenter International Study of Oxaliplatin/5-Fluorouracil/Leucovorin in the Adjuvant Treatment of Colon Cancer (MOSAIC) investigators (2004) Oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment for colon cancer. N Engl J Med 350:2343–2351PubMedCrossRefGoogle Scholar
  65. 65.
    Bariol C, Suter C, Cheong K, Ku SL, Meagher A, Hawkins N, Ward R (2003) The relationship between hypomethylation and CpG island methylation in colorectal neoplasia. Am J Pathol 162:1361–1371PubMedCrossRefGoogle Scholar
  66. 66.
    Lombardi L, Morelli F, Cinieri S, Santini D, Silvestris N, Fazio N, Orlando L, Tonini G, Colucci G, Maiello E (2010) Adjuvant colon cancer chemotherapy: where we are and where we’ll go. Cancer Treat Rev 36:S34–S41PubMedCrossRefGoogle Scholar
  67. 67.
    Witz IP (2009) The tumor microenvironment: the making of a paradigm. Cancer Microenviron Suppl 1:S9–S17CrossRefGoogle Scholar
  68. 68.
    Klein A, Sagi-Assif O, Izraely S, Meshel T, Pasmanik-Chor M, Nahmias C, Couraud PO, Erez N, Hoon DS, Witz IP (2012) The metastatic microenvironment. Brain-derived soluble factors alter the malignant phenotype of cutaneous and brain-metastasizing melanoma cells. Int J Cancer doi:10.1002/ijc.27552
  69. 69.
    Hauschild A, Trefzer U, Garbe C, Kaehler KC, Ugurel S, Kiecker F, Eigentler T, Krissel H, Schott A, Schadendorf D (2008) Multicenter phase II trial of the histone deacetylase inhibitor pyridylmethyl-N-{4-[(2-aminophenyl)-carbamoyl]-benzyl}-carbamate in pretreated metastatic melanoma. Melanoma Res 18:274–278PubMedCrossRefGoogle Scholar
  70. 70.
    Issa JP, Kantarjian HM (2009) Targeting DNA methylation. Clin Cancer Res 15:3938–3946PubMedCrossRefGoogle Scholar
  71. 71.
    Munster PN, Thurn KT, Thomas S, Raha P, Lacevic M, Miller A, Melisko M, Ismail-Khan R, Rugo H, Moasser M, Minton SE (2011) A phase II study of the histone deacetylase inhibitor vorinostat combined with tamoxifen for the treatment of patients with hormone therapy-resistant breast cancer. Br J Cancer 104:1828–1835PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Molecular OncologyJohn Wayne Cancer InstituteSanta MonicaUSA

Personalised recommendations