Clinical & Experimental Metastasis

, Volume 29, Issue 1, pp 51–62 | Cite as

Differential microstructure and physiology of brain and bone metastases in a rat breast cancer model by diffusion and dynamic contrast enhanced MRI

  • Matthew D. BuddeEmail author
  • Eric Gold
  • E. Kay Jordan
  • Joseph A. Frank
Research Paper


Pharmacological approaches to treat breast cancer metastases in the brain have been met with limited success. In part, the impermeability of the blood brain barrier (BBB) has hindered delivery of chemotherapeutic agents to metastatic tumors in the brain. BBB-permeable chemotherapeutic drugs are being developed, and noninvasively assessing the efficacy of these agents will be important in both preclinical and clinical settings. In this regard, dynamic contrast enhanced (DCE) and diffusion weighted imaging (DWI) are magnetic resonance imaging (MRI) techniques to monitor tumor vascular permeability and cellularity, respectively. In a rat model of metastatic breast cancer, we demonstrate that brain and bone metastases develop with distinct physiological characteristics as measured with MRI. Specifically, brain metastases have limited permeability of the BBB as assessed with DCE and an increased apparent diffusion coefficient (ADC) measured with DWI compared to the surrounding brain. Microscopically, brain metastases were highly infiltrative, grew through vessel co-option, and caused extensive edema and injury to the surrounding neurons and their dendrites. By comparison, metastases situated in the leptomenengies or in the bone had high vascular permeability and significantly lower ADC values suggestive of hypercellularity. On histological examination, tumors in the bone and leptomenengies were solid masses with distinct tumor margins. The different characteristics of these tissue sites highlight the influence of the microenvironment on metastatic tumor growth. In light of these results, the suitability of DWI and DCE to evaluate the response of chemotherapeutic and anti-angiogenic agents used to treat co-opted brain metastases, respectively, remains a formidable challenge.


Magnetic resonance imaging Apparent diffusion coefficient Brain metastasis Vessel co-option Dynamic contrast enhancement Breast cancer Biomarker 



Apparent diffusion coefficient


Blood brain barrier


Central nervous system


Dynamic contrast enhanced


Diffusion weighted imaging


Initial area under the gadolinium curve


Magnetic resonance imaging


Microtubule associated protein 2


Response evaluation criteria in solid tumors (RECIST)


Region of interest



This study was supported by the Intramural Research Program of the Clinical Center at the National Institutes of Health. We thank Molly Resnick for assistance with data analysis.


  1. 1.
    Tkaczuk KH (2009) Review of the contemporary cytotoxic and biologic combinations available for the treatment of metastatic breast cancer. Clin Ther 31(Pt 2):2273–2289PubMedCrossRefGoogle Scholar
  2. 2.
    Gril B et al (2010) Translational research in brain metastasis is identifying molecular pathways that may lead to the development of new therapeutic strategies. Eur J Cancer 46(7):1204–1210PubMedCrossRefGoogle Scholar
  3. 3.
    Steeg PS, Theodorescu D (2008) Metastasis: a therapeutic target for cancer. Nat Clin Pract 5(4):206–219CrossRefGoogle Scholar
  4. 4.
    Weil RJ et al (2005) Breast cancer metastasis to the central nervous system. Am J Pathol 167(4):913–920PubMedCrossRefGoogle Scholar
  5. 5.
    Nicolson GL (1988) Organ specificity of tumor metastasis: role of preferential adhesion, invasion and growth of malignant cells at specific secondary sites. Cancer Metastasis Rev 7(2):143–188PubMedCrossRefGoogle Scholar
  6. 6.
    Palmieri D et al (2007) The biology of metastasis to a sanctuary site. Clin Cancer Res 13(6):1656–1662PubMedCrossRefGoogle Scholar
  7. 7.
    Carbonell WS et al (2009) The vascular basement membrane as “soil” in brain metastasis. PLoS One 4(6):e5857PubMedCrossRefGoogle Scholar
  8. 8.
    Kienast Y et al (2010) Real-time imaging reveals the single steps of brain metastasis formation. Nat Med 16(1):116–122PubMedCrossRefGoogle Scholar
  9. 9.
    Lockman PR et al (2010) Heterogeneous blood-tumor barrier permeability determines drug efficacy in experimental brain metastases of breast cancer. Clin Cancer Res 16(23):5664–5678PubMedCrossRefGoogle Scholar
  10. 10.
    Thomas FC et al (2009) Uptake of ANG1005, a novel paclitaxel derivative, through the blood-brain barrier into brain and experimental brain metastases of breast cancer. Pharm Res 26(11):2486–2494PubMedCrossRefGoogle Scholar
  11. 11.
    Leenders WP et al (2004) Antiangiogenic therapy of cerebral melanoma metastases results in sustained tumor progression via vessel co-option. Clin Cancer Res 10(18 Pt 1):6222–6230PubMedCrossRefGoogle Scholar
  12. 12.
    Lin NU et al (2008) Phase II trial of lapatinib for brain metastases in patients with human epidermal growth factor receptor 2-positive breast cancer. J Clin Oncol 26(12):1993–1999PubMedCrossRefGoogle Scholar
  13. 13.
    Luu TH et al (2008) A phase II trial of vorinostat (suberoylanilide hydroxamic acid) in metastatic breast cancer: a California Cancer Consortium study. Clin Cancer Res 14(21):7138–7142PubMedCrossRefGoogle Scholar
  14. 14.
    Trudeau ME et al (2006) Temozolomide in metastatic breast cancer (MBC): a phase II trial of the National Cancer Institute of Canada—Clinical Trials Group (NCIC-CTG). Ann Oncol 17(6):952–956PubMedCrossRefGoogle Scholar
  15. 15.
    Morris PG, McArthur HL, Hudis CA (2009) Therapeutic options for metastatic breast cancer. Expert Opin Pharmacother 10(6):967–981PubMedCrossRefGoogle Scholar
  16. 16.
    Marty M, Pivot X (2008) The potential of anti-vascular endothelial growth factor therapy in metastatic breast cancer: clinical experience with anti-angiogenic agents, focusing on bevacizumab. Eur J Cancer 44(7):912–920PubMedCrossRefGoogle Scholar
  17. 17.
    Eisenhauer EA et al (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45(2):228–247PubMedCrossRefGoogle Scholar
  18. 18.
    Moffat BA et al (2005) Functional diffusion map: a noninvasive MRI biomarker for early stratification of clinical brain tumor response. Proc Natl Acad Sci USA 102(15):5524–5529PubMedCrossRefGoogle Scholar
  19. 19.
    Moffat BA et al (2006) The functional diffusion map: an imaging biomarker for the early prediction of cancer treatment outcome. Neoplasia 8(4):259–267PubMedCrossRefGoogle Scholar
  20. 20.
    Barrett T et al (2007) MRI of tumor angiogenesis. J Magn Reson Imaging 26(2):235–249PubMedCrossRefGoogle Scholar
  21. 21.
    Sargent DJ et al (2009) Validation of novel imaging methodologies for use as cancer clinical trial end-points. Eur J Cancer 45(2):290–299PubMedCrossRefGoogle Scholar
  22. 22.
    Song HT et al (2009) Rat model of metastatic breast cancer monitored by MRI at 3 tesla and bioluminescence imaging with histological correlation. J Transl Med 7:88PubMedCrossRefGoogle Scholar
  23. 23.
    Hasan KM, Parker DL, Alexander AL (2001) Comparison of gradient encoding schemes for diffusion-tensor MRI. J Magn Reson Imaging 13(5):769–780PubMedCrossRefGoogle Scholar
  24. 24.
    Wang HZ, Riederer SJ, Lee JN (1987) Optimizing the precision in T1 relaxation estimation using limited flip angles. Magn Reson Med 5(5):399–416PubMedCrossRefGoogle Scholar
  25. 25.
    Yankeelov TE, Gore JC (2009) Dynamic contrast enhanced magnetic resonance imaging in oncology: theory, data acquisition, analysis, and examples. Curr Med Imaging Rev 3(2):91–107PubMedCrossRefGoogle Scholar
  26. 26.
    Parker GJ et al (1997) Probing tumor microvascularity by measurement, analysis and display of contrast agent uptake kinetics. J Magn Reson Imaging 7(3):564–574PubMedCrossRefGoogle Scholar
  27. 27.
    Noebauer-Huhmann IM et al (2010) Gadolinium-based magnetic resonance contrast agents at 7 Tesla: in vitro T1 relaxivities in human blood plasma. Invest Radiol 45(9):554–558PubMedCrossRefGoogle Scholar
  28. 28.
    Woods RP et al (1998) Automated image registration: II. Intersubject validation of linear and nonlinear models. J Comput Assist Tomogr 22(1):153–165PubMedCrossRefGoogle Scholar
  29. 29.
    Hawkins BT, Egleton RD (2006) Fluorescence imaging of blood-brain barrier disruption. J Neurosci Methods 151(2):262–267PubMedCrossRefGoogle Scholar
  30. 30.
    Bauerle T et al (2010) Drug-induced vessel remodeling in bone metastases as assessed by dynamic contrast enhanced magnetic resonance imaging and vessel size imaging: a longitudinal in vivo study. Clin Cancer Res 16(12):3215–3225PubMedCrossRefGoogle Scholar
  31. 31.
    Bauerle T et al (2010) Imaging anti-angiogenic treatment response with DCE-VCT, DCE-MRI and DWI in an animal model of breast cancer bone metastasis. Eur J Radiol 73(2):280–287PubMedCrossRefGoogle Scholar
  32. 32.
    Lee KC et al (2007) An imaging biomarker of early treatment response in prostate cancer that has metastasized to the bone. Cancer Res 67(8):3524–3528PubMedCrossRefGoogle Scholar
  33. 33.
    Lee KC et al (2007) A feasibility study evaluating the functional diffusion map as a predictive imaging biomarker for detection of treatment response in a patient with metastatic prostate cancer to the bone. Neoplasia 9(12):1003–1011PubMedCrossRefGoogle Scholar
  34. 34.
    Blasberg RG et al (1984) Local blood-to-tissue transport in Walker 256 metastatic brain tumors. J Neurooncol 2(3):205–218PubMedGoogle Scholar
  35. 35.
    Zhang RD et al (1992) Differential permeability of the blood-brain barrier in experimental brain metastases produced by human neoplasms implanted into nude mice. Am J Pathol 141(5):1115–1124PubMedGoogle Scholar
  36. 36.
    Duygulu G et al (2010) Intracerebral metastasis showing restricted diffusion: correlation with histopathologic findings. Eur J Radiol 74(1):117–120PubMedCrossRefGoogle Scholar
  37. 37.
    Krabbe K et al (1997) MR diffusion imaging of human intracranial tumours. Neuroradiology 39(7):483–489PubMedCrossRefGoogle Scholar
  38. 38.
    Yoneda T et al (2001) A bone-seeking clone exhibits different biological properties from the MDA-MB-231 parental human breast cancer cells and a brain-seeking clone in vivo and in vitro. J Bone Miner Res 16(8):1486–1495PubMedCrossRefGoogle Scholar
  39. 39.
    Song HT et al. (2010) Quantitative T(2)* imaging of metastatic human breast cancer to brain in the nude rat at 3 T. NMR Biomed 24:325–334Google Scholar
  40. 40.
    Palmieri D et al (2007) Her-2 overexpression increases the metastatic outgrowth of breast cancer cells in the brain. Cancer Res 67(9):4190–4198PubMedCrossRefGoogle Scholar
  41. 41.
    Charles N, Holland EC (2010) The perivascular niche microenvironment in brain tumor progression. Cell Cycle 9(15):3012–3021PubMedCrossRefGoogle Scholar
  42. 42.
    Fitzgerald DP et al (2008) Reactive glia are recruited by highly proliferative brain metastases of breast cancer and promote tumor cell colonization. Clin Exp Metastasis 25(7):799–810PubMedCrossRefGoogle Scholar
  43. 43.
    Park JS, Bateman MC, Goldberg MP (1996) Rapid alterations in dendrite morphology during sublethal hypoxia or glutamate receptor activation. Neurobiol Dis 3(3):215–227PubMedCrossRefGoogle Scholar
  44. 44.
    Rzeski W, Turski L, Ikonomidou C (2001) Glutamate antagonists limit tumor growth. Proc Natl Acad Sci USA 98(11):6372–6377PubMedCrossRefGoogle Scholar
  45. 45.
    Takano T et al (2001) Glutamate release promotes growth of malignant gliomas. Nat Med 7(9):1010–1015PubMedCrossRefGoogle Scholar
  46. 46.
    Seidlitz EP et al (2009) Cancer cell lines release glutamate into the extracellular environment. Clin Exp Metastasis 26(7):781–787PubMedCrossRefGoogle Scholar
  47. 47.
    Ye ZC, Sontheimer H (1999) Glioma cells release excitotoxic concentrations of glutamate. Cancer Res 59(17):4383–4391PubMedGoogle Scholar
  48. 48.
    Brat DJ, Van Meir EG (2004) Vaso-occlusive and prothrombotic mechanisms associated with tumor hypoxia, necrosis, and accelerated growth in glioblastoma. Lab Invest 84(4):397–405PubMedCrossRefGoogle Scholar
  49. 49.
    Dome B et al (2007) Alternative vascularization mechanisms in cancer: pathology and therapeutic implications. Am J Pathol 170(1):1–15PubMedCrossRefGoogle Scholar
  50. 50.
    Indelicato M et al (2010) Role of hypoxia and autophagy in MDA-MB-231 invasiveness. J Cell Physiol 223(2):359–368PubMedGoogle Scholar
  51. 51.
    Hayashida Y et al (2006) Diffusion-weighted imaging of metastatic brain tumors: comparison with histologic type and tumor cellularity. AJNR Am J Neuroradiol 27(7):1419–1425PubMedGoogle Scholar
  52. 52.
    Sugahara T et al (1999) Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J Magn Reson Imaging 9(1):53–60PubMedCrossRefGoogle Scholar
  53. 53.
    Prasad SR et al (2003) Radiological measurement of breast cancer metastases to lung and liver: comparison between WHO (bidimensional) and RECIST (unidimensional) guidelines. J Comput Assist Tomogr 27(3):380–384PubMedCrossRefGoogle Scholar
  54. 54.
    Shelton LM et al (2010) A novel pre-clinical in vivo mouse model for malignant brain tumor growth and invasion. J Neurooncol 99(2):165–176PubMedCrossRefGoogle Scholar
  55. 55.
    Heyn C et al (2006) In vivo MRI of cancer cell fate at the single-cell level in a mouse model of breast cancer metastasis to the brain. Magn Reson Med 56(5):1001–1010PubMedCrossRefGoogle Scholar
  56. 56.
    Leenders W et al (2003) Vascular endothelial growth factor-A determines detectability of experimental melanoma brain metastasis in GD-DTPA-enhanced MRI. Int J Cancer 105(4):437–443PubMedCrossRefGoogle Scholar

Copyright information

© US Government 2011

Authors and Affiliations

  • Matthew D. Budde
    • 1
    Email author
  • Eric Gold
    • 1
  • E. Kay Jordan
    • 1
  • Joseph A. Frank
    • 1
    • 2
  1. 1.Radiology and Imaging Sciences, Clinical CenterNational Institutes of HealthBethesdaUSA
  2. 2.National Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaUSA

Personalised recommendations