Clinical & Experimental Metastasis

, Volume 28, Issue 8, pp 733–741 | Cite as

Migration of MDA-MB-231 breast cancer cells depends on the availability of exogenous lipids and cholesterol esterification

  • Caryl J. AntalisEmail author
  • Aki Uchida
  • Kimberly K. Buhman
  • Rafat A. Siddiqui
Research Paper


We previously described a lipid-accumulating phenotype of estrogen receptor negative (ER) breast cancer cells exemplified by the MDA-MB-231 and MDA-MB-436 cell lines. These cells had more lipid droplets, a higher uptake of oleic acid and LDL, a higher ratio of cholesteryl ester (CE) to triacylglycerol (TAG), and higher expression of acyl-CoA:cholesterol acyltransferase 1 (ACAT1) as compared to ER+ MCF-7 breast cancer cells. LDL stimulated proliferation of ER-cells only, and proliferation was reduced by inhibition of ACAT. We hypothesized that storage of exogenous lipids would confer an energetic advantage. We tested this by depriving cells of exogenous lipids and measuring chemotactic migration, an energy-intensive behavior. MDA-MB-231 cells were grown for 48 h in medium with either 5% FBS or 5% lipoprotein-depleted (LD) FBS. Growth in LD medium resulted in visibly reduced lipid droplets and an 85% decrease in cell migration. Addition of LDL to the LD medium dose-dependently restored the ability to migrate in an ACAT-sensitive manner. LDL receptor (LDLR) mRNA was 12-fold higher in MDA-MB-231 cells compared to nontumorigenic ER-MCF-10A breast epithelial cells grown in LD medium. Addition of LDL to the LD medium reduced LDLR mRNA levels in MCF-10A cells only. We asked if ACAT1 activity was associated with the expression of the LDLR in MDA-MB-231 cells. LDLR mRNA in MDA-MB-231 cells was substantially reduced by inhibition of ACAT, demonstrating that high ACAT1 activity permitted higher LDLR expression. This data substantiates the association of lipid accumulation with aggressive behavior in an ER-breast cancer cell line.


Chemotactic migration Triple negative breast cancer Cholesterol esterification ACAT1 LDLR 



Cholesteryl ester


Lipoprotein depleted




Triple negative



The authors would like to thank Cary Mariash for helpful discussions and critique of the manuscript. We thank Pfizer, Inc., for providing the ACAT inhibitor CP-113818. This study was supported by a Clarian Values Fund for Research grant (to CJA) and the Methodist Research Institute.


  1. 1.
    Sleeman J, Steeg PS (2010) Cancer metastasis as a therapeutic target. Eur J Cancer 46:1177–1180Google Scholar
  2. 2.
    Patterson RE, Cadmus LA, Emond JA, Pierce JP (2010) Physical activity, diet, adiposity and female breast cancer prognosis: a review of the epidemiologic literature. Maturitas 66:5–15Google Scholar
  3. 3.
    Cleary MP, Grossmann ME (2009) Minireview: obesity and breast cancer: the estrogen connection. Endocrinology 150:2537–2542PubMedCrossRefGoogle Scholar
  4. 4.
    Renehan AG, Frystyk J, Flyvbjerg A (2006) Obesity and cancer risk: the role of the insulin-IGF axis. Trends Endocrinol Metab 17:328–336PubMedCrossRefGoogle Scholar
  5. 5.
    Rotheneder M, Kostner GM (1989) Effects of low- and high-density lipoproteins on the proliferation of human breast cancer cells in vitro: differences between hormone-dependent and hormone-independent cell lines. Int J Cancer 43:875–879PubMedCrossRefGoogle Scholar
  6. 6.
    Chajes V, Mahon M, Kostner GM (1996) Influence of LDL oxidation on the proliferation of human breast cancer cells. Free Radic Biol Med 20:113–120PubMedCrossRefGoogle Scholar
  7. 7.
    Hardy S, El-Assaad W, Przybytkowski E, Joly E, Prentki M, Langelier Y (2003) Saturated fatty acid-induced apoptosis in MDA-MB-231 breast cancer cells. A role for cardiolipin. J Biol Chem 278:31861–31870PubMedCrossRefGoogle Scholar
  8. 8.
    Menendez JA, Lupu R (2007) Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer 7:763–777PubMedCrossRefGoogle Scholar
  9. 9.
    Antalis CJ, Arnold T, Rasool T, Lee B, Buhman KK, Siddiqui RA (2010) High ACAT1 expression in estrogen receptor negative basal-like breast cancer cells is associated with LDL-induced proliferation. Breast Cancer Res Treat 122:661–670PubMedCrossRefGoogle Scholar
  10. 10.
    Richardson AL, Wang ZC, De Nicolo A, Lu X, Brown M, Miron A, Liao X, Iglehart JD, Livingston DM, Ganesan S (2006) X chromosomal abnormalities in basal-like human breast cancer. Cancer Cell 9:121–132PubMedCrossRefGoogle Scholar
  11. 11.
    van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AA, Voskuil DW, Schreiber GJ, Peterse JL, Roberts C, Marton MJ, Parrish M, Atsma D, Witteveen A, Glas A, Delahaye L, van der Velde T, Bartelink H, Rodenhuis S, Rutgers ET, Friend SH, Bernards R (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009PubMedCrossRefGoogle Scholar
  12. 12.
    Farmer P, Bonnefoi H, Becette V, Tubiana-Hulin M, Fumoleau P, Larsimont D, Macgrogan G, Bergh J, Cameron D, Goldstein D, Duss S, Nicoulaz AL, Brisken C, Fiche M, Delorenzi M, Iggo R (2005) Identification of molecular apocrine breast tumours by microarray analysis. Oncogene 24:4660–4671PubMedCrossRefGoogle Scholar
  13. 13.
    van’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernards R, Friend SH (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536CrossRefGoogle Scholar
  14. 14.
    Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, Clark L, Bayani N, Coppe JP, Tong F, Speed T, Spellman PT, DeVries S, Lapuk A, Wang NJ, Kuo WL, Stilwell JL, Pinkel D, Albertson DG, Waldman FM, McCormick F, Dickson RB, Johnson MD, Lippman M, Ethier S, Gazdar A, Gray JW (2006) A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10:515–527PubMedCrossRefGoogle Scholar
  15. 15.
    Foulkes WD, Smith IE, Reis-Filho JS (2010) Triple-negative breast cancer. N Engl J Med 363:1938–1948Google Scholar
  16. 16.
    Sarrio D, Rodriguez-Pinilla SM, Hardisson D, Cano A, Moreno-Bueno G, Palacios J (2008) Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res 68:989–997PubMedCrossRefGoogle Scholar
  17. 17.
    Antalis CJ, Arnold T, Lee B, Buhman KK, Siddiqui RA (2009) Docosahexanoic acid is a substrate for ACAT1 and inhibits cholesteryl ester formation from oleic acid in MCF-10A cells. Prostaglandins Leukot Essent Fatty Acids 80:165–171PubMedCrossRefGoogle Scholar
  18. 18.
    Vitols S, Gunven P, Gruber A, Larsson O (1996) Expression of the low-density lipoprotein receptor, HMG-CoA reductase, and multidrug resistance (Mdr1) genes in colorectal carcinomas. Biochem Pharmacol 52:127–131PubMedCrossRefGoogle Scholar
  19. 19.
    Haeffner EW, Hoffmann CJ, Stoehr M, Scherf H (1984) Cholesterol-induced growth stimulation, cell aggregation, and membrane properties of ascites tumor cells in culture. Cancer Res 44:2668–2676PubMedGoogle Scholar
  20. 20.
    Vitols S, Gahrton G, Ost A, Peterson C (1984) Elevated low density lipoprotein receptor activity in leukemic cells with monocytic differentiation. Blood 63:1186–1193PubMedGoogle Scholar
  21. 21.
    Paillasse MR, de Medina P, Amouroux G, Mhamdi L, Poirot M, Silvente-Poirot S (2009) Signaling through cholesterol esterification: a new pathway for the cholecystokinin 2 receptor involved in cell growth and invasion. J Lipid Res 50:2203–2211PubMedCrossRefGoogle Scholar
  22. 22.
    Brown MS, Goldstein JL (1997) The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89:331–340PubMedCrossRefGoogle Scholar
  23. 23.
    Chen JK, Li L, McClure DB (1988) Altered low density lipoprotein receptor regulation is associated with cholesteryl ester accumulation in Simian virus 40 transformed rodent fibroblast cell lines. In Vitro Cell Dev Biol 24:353–358PubMedCrossRefGoogle Scholar
  24. 24.
    Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI, He X, Perou CM (2010) Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res 12:R68Google Scholar
  25. 25.
    Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, Barrette T, Pandey A, Chinnaiyan AM (2004) ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 6:1–6PubMedGoogle Scholar
  26. 26.
    Roberts PJ, Der CJ (2007) Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26:3291–3310PubMedCrossRefGoogle Scholar
  27. 27.
    Krueger JS, Keshamouni VG, Atanaskova N, Reddy KB (2001) Temporal and quantitative regulation of mitogen-activated protein kinase (MAPK) modulates cell motility and invasion. Oncogene 20:4209–4218PubMedCrossRefGoogle Scholar
  28. 28.
    Kapoor GS, Atkins BA, Mehta KD (2002) Activation of Raf-1/MEK-1/2/p42/44(MAPK) cascade alone is sufficient to uncouple LDL receptor expression from cell growth. Mol Cell Biochem 236:13–22PubMedCrossRefGoogle Scholar
  29. 29.
    Abeyweera TP, Chen X, Rotenberg SA (2009) Phosphorylation of alpha6-tubulin by protein kinase Calpha activates motility of human breast cells. J Biol Chem 284:17648–17656PubMedCrossRefGoogle Scholar
  30. 30.
    Brenneman DE, McGee R, Spector AA (1974) Cholesterol metabolism in the Ehrlich ascites tumor. Cancer Res 34:2605–2611PubMedGoogle Scholar
  31. 31.
    Bostrom P, Rutberg M, Ericsson J, Holmdahl P, Andersson L, Frohman MA, Boren J, Olofsson SO (2005) Cytosolic lipid droplets increase in size by microtubule-dependent complex formation. Arterioscler Thromb Vasc Biol 25:1945–1951PubMedCrossRefGoogle Scholar
  32. 32.
    Welte MA (2009) Fat on the move: intracellular motion of lipid droplets. Biochem Soc Trans 37:991–996PubMedCrossRefGoogle Scholar
  33. 33.
    Zehmer JK, Huang Y, Peng G, Pu J, Anderson RG, Liu P (2009) A role for lipid droplets in inter-membrane lipid traffic. Proteomics 9:914–921PubMedCrossRefGoogle Scholar
  34. 34.
    Binns D, Januszewski T, Chen Y, Hill J, Markin VS, Zhao Y, Gilpin C, Chapman KD, Anderson RG, Goodman JM (2006) An intimate collaboration between peroxisomes and lipid bodies. J Cell Biol 173:719–731PubMedCrossRefGoogle Scholar
  35. 35.
    Accioly MT, Pacheco P, Maya-Monteiro CM, Carrossini N, Robbs BK, Oliveira SS, Kaufmann C, Morgado-Diaz JA, Bozza PT, Viola JP (2008) Lipid bodies are reservoirs of cyclooxygenase-2 and sites of prostaglandin-E2 synthesis in colon cancer cells. Cancer Res 68:1732–1740PubMedCrossRefGoogle Scholar
  36. 36.
    Navarro-Tito N, Soto-Guzman A, Castro-Sanchez L, Martinez-Orozco R, Salazar EP (2010) Oleic acid promotes migration on MDA-MB-231 breast cancer cells through an arachidonic acid-dependent pathway. Int J Biochem Cell Biol 42:306-317Google Scholar
  37. 37.
    Soto-Guzman A, Navarro-Tito N, Castro-Sanchez L, Martinez-Orozco R, Salazar EP (2010) Oleic acid promotes MMP-9 secretion and invasion in breast cancer cells. Clin Exp Metastasis 27:505–515Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Caryl J. Antalis
    • 1
    • 4
    Email author
  • Aki Uchida
    • 2
  • Kimberly K. Buhman
    • 2
  • Rafat A. Siddiqui
    • 1
    • 3
  1. 1.Methodist Research InstituteIU HealthIndianapolisUSA
  2. 2.Department of Foods and NutritionPurdue UniversityW. LafayetteUSA
  3. 3.Indiana University School of MedicineIndianapolisUSA
  4. 4.Department of Obstetrics and GynecologyIndiana University School of MedicineIndianapolisUSA

Personalised recommendations