Clinical & Experimental Metastasis

, Volume 28, Issue 6, pp 505–514 | Cite as

Paracrine-mediated osteoclastogenesis by the osteosarcoma MG63 cell line: is RANKL/RANK signalling really important?

  • J. Costa-Rodrigues
  • C. A. Teixeira
  • M. H. Fernandes
Research Paper


Although in the past little attention has been paid to the influence of osteosarcoma cells in osteoclast function, recent studies suggest a close relationship between osteosarcoma aggressiveness and osteoclastic activity. The present study addresses the paracrine effects of MG63 cells, a human osteosarcoma-derived cell line, on the differentiation of peripheral blood osteoclast precursor cells (PBMC). PBMC were cultured for 21 days in the presence of conditioned media from MG63 cell cultures (CM) collected at 48 h (CM_MG1), 7 days (CM_MG2) and 14 days (CM_MG3). MG63 cell cultures displayed the expression of ALP and BMP-2 and, also, the osteoclastogenic genes M-CSF and RANKL, although with a low expression of RANKL. PBMC cultures supplemented with CM presented an evident osteoclastogenic behavior, which was dependent on the culture period of the MG63 cells. The inductive effect appeared to be more relevant for the differentiation and activation genes, c-myc and c-src, and lower for genes associated with osteoclast function. In addition, PBMC cultures displayed increased functional parameters, including calcium phosphate resorbing activity. Assessment of the PBMC cultures in the presence of U0126, PDTC, and indomethacin suggested that in addition to MEK and NFkB pathways, other signaling mechanisms, probably not involving RANKL/RANK interaction, might be activated in the presence of conditioned medium from MG63. In conclusion, MG63 cell line appears to induce a significant paracrine-mediated osteoclastogenic response. Understanding the mechanisms underlying the interaction of osteosarcoma cells and osteoclasts may contribute to the development of new potential approaches in the treatment of such bone metabolic diseases.


Osteoclastogenesis Osteoclast MG63 cell line Conditioned media 



This study was supported by a grant from Faculty of Dental Medicine, University of Porto, Portugal.


  1. 1.
    Hadjidakis DJ, Androulakis II (2006) Bone remodeling. Ann NY Acad Sci 1092:385–396PubMedCrossRefGoogle Scholar
  2. 2.
    Raisz LG (2005) Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J Clin Invest 115:3318–3325PubMedCrossRefGoogle Scholar
  3. 3.
    Zaidi M (2007) Skeletal remodeling in health and disease. Nat Med 13:791–801PubMedCrossRefGoogle Scholar
  4. 4.
    Clezardin P, Teti A (2007) Bone metastasis: pathogenesis and therapeutic implications. Clin Exp Metastas 24:599–608CrossRefGoogle Scholar
  5. 5.
    Datta HK, Ng WF, Walker JA et al (2008) The cell biology of bone metabolism. J Clin Pathol 61:577–587PubMedCrossRefGoogle Scholar
  6. 6.
    Boyce BF, Xing L (2008) Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys 473:139–146PubMedCrossRefGoogle Scholar
  7. 7.
    Matsuo K, Irie N (2008) Osteoclast–osteoblast communication. Arch Biochem Biophys 473:201–209PubMedCrossRefGoogle Scholar
  8. 8.
    Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423:337–342PubMedCrossRefGoogle Scholar
  9. 9.
    Nicholson GC, Malakellis M, Collier FM et al (2000) Induction of osteoclasts from CD14-positive human peripheral blood mononuclear cells by receptor activator of nuclear factor kappaB ligand (RANKL). Clin Sci (Lond) 99:133–140CrossRefGoogle Scholar
  10. 10.
    Hu YS, Zhou H, Myers D et al (2004) Isolation of a human homolog of osteoclast inhibitory lectin that inhibits the formation and function of osteoclasts. J Bone Miner Res 19:89–99PubMedCrossRefGoogle Scholar
  11. 11.
    Kim N, Kadono Y, Takami M et al (2005) Osteoclast differentiation independent of the TRANCE-RANK-TRAF6 axis. J Exp Med 202:589–595PubMedCrossRefGoogle Scholar
  12. 12.
    San-Julian M, Diaz-de-Rada P, Noain E et al (2003) Bone metastases from osteosarcoma. Int Orthop 27:117–120PubMedGoogle Scholar
  13. 13.
    Avnet S, Longhi A, Salerno M et al (2008) Increased osteoclast activity is associated with aggressiveness of osteosarcoma. Int J Oncol 33:1231–1238PubMedGoogle Scholar
  14. 14.
    Akiyama T, Dass CR, Choong PF (2008) Novel therapeutic strategy for osteosarcoma targeting osteoclast differentiation, bone-resorbing activity, and apoptosis pathway. Mol Cancer Ther 7:3461–3469PubMedCrossRefGoogle Scholar
  15. 15.
    Akiyama T, Choong PF, Dass CR (2010) RANK-Fc inhibits malignancy via inhibiting ERK activation and evoking caspase-3-mediated anoikis in human osteosarcoma cells. Clin Exp Metastas 27:207–215CrossRefGoogle Scholar
  16. 16.
    Akiyama T, Dass CR, Shinoda Y et al (2010) Systemic RANK-Fc protein therapy is efficacious against primary osteosarcoma growth in a murine model via activity against osteoclasts. J Pharm Pharmacol 62:470–476PubMedGoogle Scholar
  17. 17.
    Miyamoto N, Higuchi Y, Mori K et al (2002) Human osteosarcoma-derived cell lines produce soluble factor(s) that induces differentiation of blood monocytes to osteoclast-like cells. Int Immunopharmacol 2:25–38PubMedCrossRefGoogle Scholar
  18. 18.
    Itoh K, Udagawa N, Matsuzaki K, Takami M, Amano H, Shinki T et al (2000) Importance of membrane- or matrix-associated forms of M-CSF and RANKL/ODF in osteoclastogenesis supported by SaOS-4/3 cells expressing recombinant PTH/PTHrP receptors. J Bone Miner Res 15:1766–1775PubMedCrossRefGoogle Scholar
  19. 19.
    Kawase T, Okuda K, Burns DM (2005) Immature osteoblastic MG63 cells possess two calcitonin gene-related peptide receptor subtypes that respond differently to [Cys(Acm)(2,7)] calcitonin gene-related peptide and CGRP(8–37). Am J Physiol Cell Physiol 289:C811–C818PubMedCrossRefGoogle Scholar
  20. 20.
    Blair HC, Sidonio RF, Friedberg RC et al (2000) Proteinase expression during differentiation of human osteoclasts in vitro. J Cell Biochem 78:627–637PubMedCrossRefGoogle Scholar
  21. 21.
    Lossdorfer S, Schwartz Z, Wang L et al (2004) Microrough implant surface topographies increase osteogenesis by reducing osteoclast formation and activity. J Biomed Mater Res 70:361–369CrossRefGoogle Scholar
  22. 22.
    Granchi D, Cenni E, Savarino L et al (2002) Bone cement extracts modulate the osteoprotegerin/osteoprotegerin-ligand expression in MG63 osteoblast-like cells. Biomaterials 23:2359–2365PubMedCrossRefGoogle Scholar
  23. 23.
    Taichman RS, Emerson SG (1996) Human osteosarcoma cell lines MG-63 and SaOS-2 produce G-CSF and GM-CSF: identification and partial characterization of cell-associated isoforms. Exp Hematol 24:509–517PubMedGoogle Scholar
  24. 24.
    Toma CD, Svoboda M, Arrich F et al (2007) Expression of the melatonin receptor (MT) 1 in benign and malignant human bone tumors. J Pineal Res 43:206–213PubMedCrossRefGoogle Scholar
  25. 25.
    Costa-Rodrigues J, Teixeira CA, Sampaio P et al (2010) Characterisation of the osteoclastogenic potential of human osteoblastic and fibroblastic conditioned media. J Cell Biochem 109:205–216PubMedGoogle Scholar
  26. 26.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  27. 27.
    Hotokezaka H, Sakai E, Ohara N et al (2007) Molecular analysis of RANKL-independent cell fusion of osteoclast-like cells induced by TNF-α, lipopolysaccharide, or peptidoglycan. J Cell Biochem 101:122–134PubMedCrossRefGoogle Scholar
  28. 28.
    Yamashita M, Otsuka F, Mukai T et al (2010) Simvastatin inhibits osteoclast differentiation induced by bone morphogenetic protein-2 and RANKL through regulating MAPK, AKT and Src signaling. Regul Pept 162:99–108PubMedCrossRefGoogle Scholar
  29. 29.
    Hotokezaka H, Sakai E, Kanaoka K et al (2002) U0126 and PD98059, specific inhibitors of MEK, accelerate differentiation of RAW264.7 cells into osteoclast-like cells. J Biol Chem 277:47366–47372PubMedCrossRefGoogle Scholar
  30. 30.
    Yang CR, Wang JH, Hsieh SL et al (2004) Decoy receptor 3 (DcR3) induces osteoclast formation from monocyte/macrophage lineage precursor cells. Cell Death Differ 11:S97–S107PubMedCrossRefGoogle Scholar
  31. 31.
    Yang Q, McHugh KP, Patntirapong S et al (2008) VEGF enhancement of osteoclast survival and bone resorption involves VEGF receptor-2 signaling and beta3-integrin. Matrix Biol 27:589–599PubMedCrossRefGoogle Scholar
  32. 32.
    Kim HJ, Lee Y, Chang EJ et al (2007) Suppression of osteoclastogenesis by N,N-dimethyl-d-erythro-sphingosine: a sphingosine kinase inhibition-independent action. Mol Pharmacol 72:418–428PubMedCrossRefGoogle Scholar
  33. 33.
    Hall TJ, Schaeublin M, Jeker H et al (1995) The role of reactive oxygen intermediates in osteoclastic bone resorption. Biochem Biophys Res Commun 207:280–287PubMedCrossRefGoogle Scholar
  34. 34.
    Kellinsalmi M, Parikka V, Risteli J et al (2007) Inhibition of cyclooxygenase-2 down-regulates osteoclast and osteoblast differentiation and favours adipocyte formation in vitro. Eur J Pharmacol 572:102–110PubMedCrossRefGoogle Scholar
  35. 35.
    Kawashima M, Fujikawa Y, Itonaga I et al (2009) The effect of selective cyclooxygenase-2 inhibitor on human osteoclast precursors to influence osteoclastogenesis in vitro. Mod Rheumatol 19:192–198PubMedCrossRefGoogle Scholar
  36. 36.
    Hessle L, Johnson KA, Anderson HC et al (2002) Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization. Proc Natl Acad Sci USA 99:9445–9449PubMedCrossRefGoogle Scholar
  37. 37.
    Torii Y, Hitomi K, Yamagishi Y et al (1996) Demonstration of alkaline phosphatase participation in the mineralization of osteoblasts by antisense RNA approach. Cell Biol Int 20:459–464PubMedCrossRefGoogle Scholar
  38. 38.
    Chen D, Zhao M, Mundy GR (2004) Bone morphogenetic proteins. Growth Factors 22:233–241PubMedCrossRefGoogle Scholar
  39. 39.
    Pixley FJ, Stanley ER (2004) CSF-1 regulation of the wandering macrophage: complexity in action. Trends Cell Biol 14:628–638PubMedCrossRefGoogle Scholar
  40. 40.
    Knowles HJ, Athanasou NA (2008) Hypoxia-inducible factor is expressed in giant cell tumour of bone and mediates paracrine effects of hypoxia on monocyte-osteoclast differentiation via induction of VEGF. J Pathol 215:56–66PubMedCrossRefGoogle Scholar
  41. 41.
    Yasuda H, Shima N, Nakagawa N et al (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 95:3597–3602PubMedCrossRefGoogle Scholar
  42. 42.
    Zhao Q, Shao J, Chen W et al (2007) Osteoclast differentiation and gene regulation. Front Biosci 12:2519–2529PubMedCrossRefGoogle Scholar
  43. 43.
    de Vries TJ, Mullender MG, van Duin MA et al (2009) The Src inhibitor AZD0530 reversibly inhibits the formation and activity of human osteoclasts. Mol Cancer Res 7:476–488PubMedCrossRefGoogle Scholar
  44. 44.
    Battaglino R, Kim D, Fu J et al (2002) c-myc is required for osteoclast differentiation. J Bone Miner Res 17:763–773PubMedCrossRefGoogle Scholar
  45. 45.
    Logar DB, Komadina R, Preželj J et al (2007) Expression of bone resorption genes in osteoarthritis and in osteoporosis. J Bone Miner Metab 25:219–225PubMedCrossRefGoogle Scholar
  46. 46.
    Bradley EW, Ruan MM, Vrable A et al (2008) Pathway crosstalk between Ras/Raf and PI3K in promotion of M-CSF-induced MEK/ERK-mediated osteoclast survival. J Cell Biochem 104:1439–1451PubMedCrossRefGoogle Scholar
  47. 47.
    Roodman GD (1999) Cell biology of the osteoclast. Exp Hematol 27:1229–1241PubMedCrossRefGoogle Scholar
  48. 48.
    Strait K, Li Y, Dillehay DL et al (2008) Suppression of NF-kappaB activation blocks osteoclastic bone resorption during estrogen deficiency. Int J Mol Med 21:521–525PubMedGoogle Scholar
  49. 49.
    Okada Y, Pilbeam C, Raisz L et al (2003) Role of cyclooxygenase-2 in bone resorption. J UOEH 25:185–195PubMedGoogle Scholar
  50. 50.
    Blackwell KA, Raisz LG, Pilbeam CC (2010) Prostaglandins in bone: bad cop, good cop? Trends Endocrinol Metab 21:294–301PubMedCrossRefGoogle Scholar
  51. 51.
    Cenni E, Granchi D, Ciapetti G et al (2001) Interleukin-6 expression by osteoblast-like MG63 cells challenged with four acrylic bone cements. J Biomater Sci 12:243–253CrossRefGoogle Scholar
  52. 52.
    Kakonen SM, Mundy GR (2003) Mechanisms of osteolytic bone metastases in breast carcinoma. Cancer 97:834–839PubMedCrossRefGoogle Scholar
  53. 53.
    Morrissey C, Vessella RL (2007) The role of tumor microenvironment in prostate cancer bone metastasis. J Cell Biochem 101:873–886PubMedCrossRefGoogle Scholar
  54. 54.
    Michael H, Harkonen PL, Kangas L et al (2007) Differential effects of selective oestrogen receptor modulators (SERMs) tamoxifen, ospemifene and raloxifene on human osteoclasts in vitro. Br J Pharmacol 151:384–395PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • J. Costa-Rodrigues
    • 1
  • C. A. Teixeira
    • 1
    • 2
  • M. H. Fernandes
    • 1
  1. 1.Laboratório de Farmacologia e Biocompatibilidade Celular, Faculdade de Medicina DentáriaUniversidade do PortoPortoPortugal
  2. 2.Faculdade de CiênciasUniversidade do PortoPortoPortugal

Personalised recommendations