Clinical & Experimental Metastasis

, Volume 28, Issue 2, pp 113–125 | Cite as

Versican induces a pro-metastatic ovarian cancer cell behavior which can be inhibited by small hyaluronan oligosaccharides

  • Miranda P. Ween
  • Katja Hummitzsch
  • Raymond J. Rodgers
  • Martin K. Oehler
  • Carmela RicciardelliEmail author
Research Paper


The assembly of pericellular matrix containing hyaluronan (HA) and versican has been shown to be a pre-requisite for proliferation and migration of mesenchymal cells. In this study, we investigated whether treatment with recombinant versican could induce the formation of a pericellular matrix by ovarian cancer cells (OVCAR-3, OVCAR-5, and SKOV-3) and promote their motility, invasion, and adhesion to peritoneal cells in vitro. We also determined whether versican-induced pericellular matrix formation and metastatic cancer cell behavior could be blocked by small HA oligosaccharides. Only combined treatment with recombinant versican and HA resulted in pericellular matrix formation by OVCAR-5 and SKOV-3 but not by OVCAR-3 cells, which lack the HA receptor, CD44. The motility of OVCAR-5 and SKOV-3 cells was significantly increased in scratch wound and chemotaxis assays following treatment with recombinant versican and HA. Versican and HA also promoted invasion of SKOV-3 and OVCAR-5 cells but had no effect on OVCAR-3 cells. We have demonstrated that exogenous HA significantly increased OVCAR-5 and SKOV-3 adhesion to peritoneal cells but adhesion was not further increased by versican treatment. Small HA oligomers (6–10 disaccharides) were able to significantly block formation of pericellular matrix by OVCAR-5 cells, as well as the increased motility and invasion induced by recombinant versican. HA oligomers also significantly blocked OVCAR-5 adhesion to peritoneal cells both in the presence and absence of exogenous HA. The dependence of CD44 for the versican and HA mediated effects were demonstrated by the inhibition of pericellular matrix formation as well as motility and invasion of OVCAR-5 cells following treatment with CD44 neutralizing antibody in the presence of versican and HA. We conclude that the acquisition of a HA/versican pericellular matrix by ovarian cancer cells increases their metastatic potential. HA oligomers can block this mechanism and are promising inhibitors of ovarian cancer dissemination.


Extracellular matrix Versican Hyaluronan CD44 Motility Invasion 



Bovine serum albumin


Conditioned media


Extracellular matrix




Fetal bovine serum


Federation of Gynecologist and Obstetricians


Extracellular signal-regulated kinase






Mitogen-activated protein kinase

PI 3

Phosphatidylinositol 3



This work was supported by the University of Adelaide Faculty of Health Sciences (Hilda Farmer Research Fellowship to CR) and the Ovarian Cancer Research Foundation of Australia.

Supplementary material

10585_2010_9363_MOESM1_ESM.pdf (512 kb)
Supplemental material 1 Versican purification. a. Fractions separated with Sephacryl 400 immunoblotted with 12C5 mouse antibody to human versican. Unconcentrated CM from CHO V1 cells cultured in MEM + 10% FBS (lane 1, 20 μl), CM after Q-Sepharose absorption (lane 2, 20 μl), 2 M NaCl elute (lane 3, 5 μl) which was then loaded onto the Sephacryl column and pooled fractions (lanes 4 and 5, 10 μl of 25× concentrate). b. Corresponding silver stained gel. No contaminating proteins were detected in fraction pools 1 or 2. (PDF 512 kb)
10585_2010_9363_MOESM2_ESM.tif (340 kb)
Supplemental material 2 FACS analysis of CD44 staining in OVCAR-5 (a), SKOV-3 (b) and OVCAR-3 (c) cells incubated with no primary antibody or CD44 antibody. (TIFF 340 kb)
Supplemental material 3

Time lapse movie of SKOV-3 cells following treatment with versican containing media (CHO V1) over a 2 h time period.(AVI 4231 kb)


  1. 1.
    Stewart BW (2003) WHO world cancer report. Lyon, France Google Scholar
  2. 2.
    Jemal A, Siegel R, Ward E et al (2009) Cancer statistics, 2009. CA Cancer J Clin 59(4):225–249CrossRefPubMedGoogle Scholar
  3. 3.
    Doig T, Monaghan H (2006) Sampling the omentum in ovarian neoplasia: when one block is enough. Int J Gynecol Cancer 16(1):36–40CrossRefPubMedGoogle Scholar
  4. 4.
    Liotta LA, Kohn EC (2001) The microenvironment of the tumour-host interface. Nature 411(6835):375–379CrossRefPubMedGoogle Scholar
  5. 5.
    Zigrino P, Loffek S, Mauch C (2005) Tumor-stroma interactions: their role in the control of tumor cell invasion. Biochimie 87(3–4):321–328CrossRefPubMedGoogle Scholar
  6. 6.
    Ricciardelli C, Rodgers RJ (2006) Extracellular matrix of ovarian tumors. Semin Reprod Med 24(4):270–282CrossRefPubMedGoogle Scholar
  7. 7.
    Gardner MJ, Jones LM, Catterall JB et al (1995) Expression of cell adhesion molecules on ovarian tumour cell lines and mesothelial cells, in relation to ovarian cancer metastasis. Cancer Lett 91(2):229–234CrossRefPubMedGoogle Scholar
  8. 8.
    Gardner MJ, Catterall JB, Jones LM et al (1996) Human ovarian tumour cells can bind hyaluronic acid via membrane CD44: a possible step in peritoneal metastasis. Clin Exp Metastasis 14(4):325–334CrossRefPubMedGoogle Scholar
  9. 9.
    Wilson KE, Bartlett JM, Miller EP et al (1999) Regulation and function of the extracellular matrix protein tenascin-C in ovarian cancer cell lines. Br J Cancer 80(5–6):685–692CrossRefPubMedGoogle Scholar
  10. 10.
    Strobel T, Cannistra SA (1999) Beta1-integrins partly mediate binding of ovarian cancer cells to peritoneal mesothelium in vitro. Gynecol Oncol 73(3):362–367CrossRefPubMedGoogle Scholar
  11. 11.
    Anttila MA, Tammi RH, Tammi MI et al (2000) High levels of stromal hyaluronan predict poor disease outcome in epithelial ovarian cancer. Cancer Res 60(1):150–155PubMedGoogle Scholar
  12. 12.
    Voutilainen K, Anttila M, Sillanpaa S et al (2003) Versican in epithelial ovarian cancer: relation to hyaluronan, clinicopathologic factors and prognosis. Int J Cancer 107(3):359–364CrossRefPubMedGoogle Scholar
  13. 13.
    Freedman RS, Deavers M, Liu J et al (2004) Peritoneal inflammation––a microenvironment for epithelial ovarian cancer (EOC). J Transl Med 2(1):23CrossRefPubMedGoogle Scholar
  14. 14.
    Salani R, Neuberger I, Kurman RJ et al (2007) Expression of extracellular matrix proteins in ovarian serous tumors. Int J Gynecol Pathol 26(2):141–146CrossRefPubMedGoogle Scholar
  15. 15.
    Kenny HA, Kaur S, Coussens LM et al (2008) The initial steps of ovarian cancer cell metastasis are mediated by MMP-2 cleavage of vitronectin and fibronectin. J Clin Invest 118(4):1367–1379CrossRefPubMedGoogle Scholar
  16. 16.
    Heyman L, Kellouche S, Fernandes J et al (2008) Vitronectin and its receptors partly mediate adhesion of ovarian cancer cells to peritoneal mesothelium in vitro. Tumour Biol 29(4):231–244CrossRefPubMedGoogle Scholar
  17. 17.
    Toole BP (2004) Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer 4(7):528–539CrossRefPubMedGoogle Scholar
  18. 18.
    Tammi MI, Day AJ, Turley EA (2002) Hyaluronan and homeostasis: a balancing act. J Biol Chem 277(7):4581–4584CrossRefPubMedGoogle Scholar
  19. 19.
    Hiltunen EL, Anttila M, Kultti A et al (2002) Elevated hyaluronan concentration without hyaluronidase activation in malignant epithelial ovarian tumors. Cancer Res 62(22):6410–6413PubMedGoogle Scholar
  20. 20.
    Boregowda RK, Appaiah HN, Siddaiah M et al (2006) Expression of hyaluronan in human tumor progression. J Carcinog 5:2CrossRefPubMedGoogle Scholar
  21. 21.
    Jojovic M, Delpech B, Prehm P et al (2002) Expression of hyaluronate and hyaluronate synthase in human primary tumours and their metastases in scid mice. Cancer Lett 188(1–2):181–189CrossRefPubMedGoogle Scholar
  22. 22.
    Yeo TK, Nagy JA, Yeo KT et al (1996) Increased hyaluronan at sites of attachment to mesentery by CD44-positive mouse ovarian and breast tumor cells. Am J Pathol 148(6):1733–1740PubMedGoogle Scholar
  23. 23.
    Catterall JB, Jones LM, Turner GA (1999) Membrane protein glycosylation and CD44 content in the adhesion of human ovarian cancer cells to hyaluronan. Clin Exp Metastasis 17(7):583–591CrossRefPubMedGoogle Scholar
  24. 24.
    Casey RC, Skubitz AP (2000) CD44 and beta1 integrins mediate ovarian carcinoma cell migration toward extracellular matrix proteins. Clin Exp Metastasis 18(1):67–75CrossRefPubMedGoogle Scholar
  25. 25.
    Lancaster JM, Dressman HK, Clarke JP et al (2006) Identification of genes associated with ovarian cancer metastasis using microarray expression analysis. Int J Gynecol Cancer 16(5):1733–1745CrossRefPubMedGoogle Scholar
  26. 26.
    Bignotti E, Tassi RA, Calza S et al (2007) Gene expression profile of ovarian serous papillary carcinomas: identification of metastasis-associated genes. Am J Obstet Gynecol 196(3):245 e1–245 e11CrossRefGoogle Scholar
  27. 27.
    Bast RC (2004) Early detection of ovarian cancer: new technologies in pursuit of a disease that is neither common nor rare. Trans Am Clin Climatol Assoc 115:233–248PubMedGoogle Scholar
  28. 28.
    Wight TN (2002) Versican: a versatile extracellular matrix proteoglycan in cell biology. Curr Opin Cell Biol 14(5):617–623CrossRefPubMedGoogle Scholar
  29. 29.
    Ricciardelli C, Sakko AJ, Ween MP et al (2009) The biological role and regulation of versican levels in cancer. Cancer Metastasis Rev 28:233–245CrossRefPubMedGoogle Scholar
  30. 30.
    Ricciardelli C, Mayne K, Sykes PJ et al (1998) Elevated levels of versican but not decorin predict disease progression in early-stage prostate cancer. Clin Cancer Res 4(4):963–971PubMedGoogle Scholar
  31. 31.
    Ricciardelli C, Brooks JH, Suwiwat S et al (2002) Regulation of stromal versican expression by breast cancer cells and importance to relapse-free survival in patients with node-negative primary breast cancer. Clin Cancer Res 8(4):1054–1060PubMedGoogle Scholar
  32. 32.
    Hanekamp EE, Gielen SC, Smid-Koopman E et al (2003) Consequences of loss of progesterone receptor expression in development of invasive endometrial cancer. Clin Cancer Res 9(11):4190–4199PubMedGoogle Scholar
  33. 33.
    Suwiwat S, Ricciardelli C, Tammi R et al (2004) Expression of extracellular matrix components versican, chondroitin sulfate, tenascin, and hyaluronan, and their association with disease outcome in node-negative breast cancer. Clin Cancer Res 10(7):2491–2498CrossRefPubMedGoogle Scholar
  34. 34.
    Pukkila MJ, Kosunen AS, Virtaniemi JA et al (2004) Versican expression in pharyngeal squamous cell carcinoma: an immunohistochemical study. J Clin Pathol 57(7):735–739CrossRefPubMedGoogle Scholar
  35. 35.
    Pirinen R, Leinonen T, Bohm J et al (2005) Versican in nonsmall cell lung cancer: relation to hyaluronan, clinicopathologic factors, and prognosis. Hum Pathol 36(1):44–50CrossRefPubMedGoogle Scholar
  36. 36.
    Kodama J, Hasengaowa, Kusumoto T et al (2007) Versican expression in human cervical cancer. Eur J Cancer 43(9):1460–1466CrossRefPubMedGoogle Scholar
  37. 37.
    Kodama J, Hasengaowa, Kusumoto T et al (2007) Prognostic significance of stromal versican expression in human endometrial cancer. Ann Oncol 18(2):269–274CrossRefPubMedGoogle Scholar
  38. 38.
    Pukkila M, Kosunen A, Ropponen K et al (2007) High stromal versican expression predicts unfavourable outcome in oral squamous cell carcinoma. J Clin Pathol 60(3):267–272CrossRefPubMedGoogle Scholar
  39. 39.
    Casey RC, Oegema TR Jr, Skubitz KM et al (2003) Cell membrane glycosylation mediates the adhesion, migration, and invasion of ovarian carcinoma cells. Clin Exp Metastasis 20(2):143–152CrossRefPubMedGoogle Scholar
  40. 40.
    Lu KH, Patterson AP, Wang L et al (2004) Selection of potential markers for epithelial ovarian cancer with gene expression arrays and recursive descent partition analysis. Clin Cancer Res 10(10):3291–3300CrossRefPubMedGoogle Scholar
  41. 41.
    Evanko SP, Angello JC, Wight TN (1999) Formation of hyaluronan- and versican-rich pericellular matrix is required for proliferation and migration of vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 19(4):1004–1013PubMedGoogle Scholar
  42. 42.
    Ricciardelli C, Russell DL, Ween MP et al (2007) Formation of hyaluronan- and versican-rich pericellular matrix by prostate cancer cells promotes cell motility. J Biol Chem 282(14):10814–10825CrossRefPubMedGoogle Scholar
  43. 43.
    Zeng C, Toole BP, Kinney SD et al (1998) Inhibition of tumor growth in vivo by hyaluronan oligomers. Int J Cancer 77(3):396–401CrossRefPubMedGoogle Scholar
  44. 44.
    Ghatak S, Misra S, Toole BP (2002) Hyaluronan oligosaccharides inhibit anchorage-independent growth of tumor cells by suppressing the phosphoinositide 3-kinase/Akt cell survival pathway. J Biol Chem 277(41):38013–38020CrossRefPubMedGoogle Scholar
  45. 45.
    Ward JA, Huang L, Guo H et al (2003) Perturbation of hyaluronan interactions inhibits malignant properties of glioma cells. Am J Pathol 162(5):1403–1409CrossRefPubMedGoogle Scholar
  46. 46.
    LeBaron RG, Zimmermann DR, Ruoslahti E (1992) Hyaluronate binding properties of versican. J Biol Chem 267(14):10003–10010PubMedGoogle Scholar
  47. 47.
    Ween MP, Lokman NA, Hoffmann P et al (2010) Transforming growth factor beta-induced protein secreted by peritoneal cells increases the metastatic potential of ovarian cancer cells. Int J Cancer. doi: 10.1002/ijc.25494
  48. 48.
    Knudson W, Knudson CB (1991) Assembly of a chondrocyte-like pericellular matrix on non-chondrogenic cells. Role of the cell surface hyaluronan receptors in the assembly of a pericellular matrix. J Cell Sci 99(Pt 2):227–235PubMedGoogle Scholar
  49. 49.
    Knudson W, Aguiar DJ, Hua Q et al (1996) CD44-anchored hyaluronan-rich pericellular matrices: an ultrastructural and biochemical analysis. Exp Cell Res 228(2):216–228CrossRefPubMedGoogle Scholar
  50. 50.
    Simpson MA, Reiland J, Burger SR et al (2001) Hyaluronan synthase elevation in metastatic prostate carcinoma cells correlates with hyaluronan surface retention, a prerequisite for rapid adhesion to bone marrow endothelial cells. J Biol Chem 276(21):17949–17957CrossRefPubMedGoogle Scholar
  51. 51.
    Draffin JE, McFarlane S, Hill A et al (2004) CD44 potentiates the adherence of metastatic prostate and breast cancer cells to bone marrow endothelial cells. Cancer Res 64(16):5702–5711CrossRefPubMedGoogle Scholar
  52. 52.
    Ghosh S, Albitar L, Lebaron R et al (2010) Up-regulation of stromal versican expression in advanced stage serous ovarian cancer. Gynecol Oncol 119:114–120CrossRefPubMedGoogle Scholar
  53. 53.
    Tzuman YC, Sapoznik S, Granot D et al (2010) Peritoneal adhesion and angiogenesis in ovarian carcinoma are inversely regulated by hyaluronan: the role of gonadotropins. Neoplasia 12(1):51–60PubMedGoogle Scholar
  54. 54.
    Bourguignon LY, Zhu H, Chu A et al (1997) Interaction between the adhesion receptor, CD44, and the oncogene product, p185HER2, promotes human ovarian tumor cell activation. J Biol Chem 272(44):27913–27918CrossRefPubMedGoogle Scholar
  55. 55.
    Bourguignon LY, Zhu H, Shao L et al (2001) CD44 interaction with c-Src kinase promotes cortactin-mediated cytoskeleton function and hyaluronic acid-dependent ovarian tumor cell migration. J Biol Chem 276(10):7327–7336CrossRefPubMedGoogle Scholar
  56. 56.
    Bourguignon LY, Singleton PA, Zhu H et al (2002) Hyaluronan promotes signaling interaction between CD44 and the transforming growth factor beta receptor I in metastatic breast tumor cells. J Biol Chem 277(42):39703–39712CrossRefPubMedGoogle Scholar
  57. 57.
    Turley EA, Noble PW, Bourguignon LY (2002) Signaling properties of hyaluronan receptors. J Biol Chem 277(7):4589–4592CrossRefPubMedGoogle Scholar
  58. 58.
    Ghatak S, Misra S, Toole BP (2005) Hyaluronan constitutively regulates ErbB2 phosphorylation and signaling complex formation in carcinoma cells. J Biol Chem 280(10):8875–8883CrossRefPubMedGoogle Scholar
  59. 59.
    Bourguignon LY (2008) Hyaluronan-mediated CD44 activation of Rho GTPase signaling and cytoskeleton function promotes tumor progression. Semin Cancer Biol 18(4):251–259CrossRefPubMedGoogle Scholar
  60. 60.
    Misra S, Obeid LM, Hannun YA et al (2008) Hyaluronan constitutively regulates activation of COX-2-mediated cell survival activity in intestinal epithelial and colon carcinoma cells. J Biol Chem 283(21):14335–14344CrossRefPubMedGoogle Scholar
  61. 61.
    Toole BP (2009) Hyaluronan-CD44 interactions in cancer: paradoxes and possibilities. Clin Cancer Res 15(24):7462–7468CrossRefPubMedGoogle Scholar
  62. 62.
    Bastow ER, Lamb KJ, Lewthwaite JC et al (2005) Selective activation of the MEK-ERK pathway is regulated by mechanical stimuli in forming joints and promotes pericellular matrix formation. J Biol Chem 280(12):11749–11758CrossRefPubMedGoogle Scholar
  63. 63.
    Lewthwaite JC, Bastow ER, Lamb KJ et al (2006) A specific mechanomodulatory role for p38 MAPK in embryonic joint articular surface cell MEK-ERK pathway regulation. J Biol Chem 281(16):11011–11018CrossRefPubMedGoogle Scholar
  64. 64.
    Stern R, Asari AA, Sugahara KN (2006) Hyaluronan fragments: an information-rich system. Eur J Cell Biol 85(8):699–715CrossRefPubMedGoogle Scholar
  65. 65.
    Lokeshwar VB, Obek C, Soloway MS et al (1997) Tumor-associated hyaluronic acid: a new sensitive and specific urine marker for bladder cancer. Cancer Res 57(4):773–777PubMedGoogle Scholar
  66. 66.
    Alaniz L, Garcia MG, Gallo-Rodriguez C et al (2006) Hyaluronan oligosaccharides induce cell death through PI3-K/Akt pathway independently of NF-kappaB transcription factor. Glycobiology 16(5):359–367CrossRefPubMedGoogle Scholar
  67. 67.
    Hosono K, Nishida Y, Knudson W et al (2007) Hyaluronan oligosaccharides inhibit tumorigenicity of osteosarcoma cell lines MG-63 and LM-8 in vitro and in vivo via perturbation of hyaluronan-rich pericellular matrix of the cells. Am J Pathol 171(1):274–286CrossRefPubMedGoogle Scholar
  68. 68.
    Slomiany MG, Dai L, Bomar PA et al (2009) Abrogating drug resistance in malignant peripheral nerve sheath tumors by disrupting hyaluronan-CD44 interactions with small hyaluronan oligosaccharides. Cancer Res 69(12):4992–4998CrossRefPubMedGoogle Scholar
  69. 69.
    Alaniz L, Rizzo M, Malvicini M et al (2009) Low molecular weight hyaluronan inhibits colorectal carcinoma growth by decreasing tumor cell proliferation and stimulating immune response. Cancer Lett 278(1):9–16CrossRefPubMedGoogle Scholar
  70. 70.
    Cui X, Zhou S, Xu H et al (2009) Reversal effects of hyaluronan oligosaccharides on adriamycin resistance of K562/A02 cells. Anticancer Drugs 20(9):800–806CrossRefPubMedGoogle Scholar
  71. 71.
    Cordo Russo RI, Garcia MG, Alaniz L et al (2008) Hyaluronan oligosaccharides sensitize lymphoma resistant cell lines to vincristine by modulating P-glycoprotein activity and PI3 K/Akt pathway. Int J Cancer 122(5):1012–1018CrossRefPubMedGoogle Scholar
  72. 72.
    Slomiany MG, Dai L, Tolliver LB et al (2009) Inhibition of functional hyaluronan-CD44 interactions in CD133-positive primary human ovarian carcinoma cells by small hyaluronan oligosaccharides. Clin Cancer Res 15(24):7593–7601CrossRefPubMedGoogle Scholar
  73. 73.
    Auzenne E, Ghosh SC, Khodadadian M et al (2007) Hyaluronic acid-paclitaxel: antitumor efficacy against CD44(+) human ovarian carcinoma xenografts. Neoplasia 9(6):479–486CrossRefPubMedGoogle Scholar
  74. 74.
    Banzato A, Bobisse S, Rondina M et al (2008) A paclitaxel-hyaluronan bioconjugate targeting ovarian cancer affords a potent in vivo therapeutic activity. Clin Cancer Res 14(11):3598–3606CrossRefPubMedGoogle Scholar
  75. 75.
    Gibbs P, Brown TJ, Ng R et al (2009) A pilot human evaluation of a formulation of irinotecan and hyaluronic acid in 5-fluorouracil-refractory metastatic colorectal cancer patients. Chemotherapy 55(1):49–59CrossRefPubMedGoogle Scholar
  76. 76.
    Gibbs P, Clingan PR, Ganju V et al (2010) Hyaluronan-Irinotecan improves progression-free survival in 5-fluorouracil refractory patients with metastatic colorectal cancer: a randomized phase II trial. Cancer Chemother Pharmacol. doi: 10.1007/s00280-010-1303-3

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Miranda P. Ween
    • 1
  • Katja Hummitzsch
    • 1
  • Raymond J. Rodgers
    • 1
  • Martin K. Oehler
    • 1
    • 2
  • Carmela Ricciardelli
    • 1
    Email author
  1. 1.Discipline of Obstetrics and Gynaecology, School of Paediatrics and Reproductive Health, Research Centre for Reproductive Health, Robinson InstituteUniversity of AdelaideAdelaideAustralia
  2. 2.Department of Gynaecological OncologyRoyal Adelaide HospitalAdelaideAustralia

Personalised recommendations