Clinical & Experimental Metastasis

, Volume 28, Issue 1, pp 75–90 | Cite as

Characterization of hybrid cells derived from spontaneous fusion events between breast epithelial cells exhibiting stem-like characteristics and breast cancer cells

  • Thomas DittmarEmail author
  • Sarah Schwitalla
  • Jeanette Seidel
  • Sonja Haverkampf
  • Georg Reith
  • Sönke Meyer-Staeckling
  • Burkhard H. Brandt
  • Bernd Niggemann
  • Kurt S. Zänker
Research Paper


Several data of the past years clearly indicated that the fusion of tumor cells and tumor cells or tumor cells and normal cells can give rise to hybrids cells exhibited novel properties such as an increased malignancy, drug resistance, or resistance to apoptosis. In the present study we characterized hybrid cells derived from spontaneous fusion events between the breast epithelial cell line M13SV1-EGFP-Neo and two breast cancer cell lines: HS578T-Hyg and MDA-MB-435-Hyg. Short-tandem-repeat analysis revealed an overlap of parental alleles in all hybrid cells indicating that hybrid cells originated from real cell fusion events. RealTime-PCR-array gene expression data provided evidence that each hybrid cell clone exhibited a unique gene expression pattern, resulting in a specific resistance of hybrid clones towards chemotherapeutic drugs, such as doxorubicin and paclitaxel, as well as a specific migratory behavior of hybrid clones towards EGF. For instance, M13MDA435-4 hybrids showed a marked resistance towards etoposide, doxorubicin and paclitaxel, whereas hybrid clones M13MDA-435-1 and -2 were only resistant towards etoposide. Likewise, all investigated M13MDA435 hybrids responded to EGF with an increased migratory activity, whereas the migration of parental MDA-MB-435-Hyg cells was blocked by EGF, suggesting that M13MDA435 hybrids may have acquired a new motility pathway. Similar findings have been obtained for M13HS hybrids. We conclude from our data that they further support the hypothesis that cell fusion could give rise to drug resistant and migratory active tumor (hybrid) cells in cancer.


Cell fusion Adult tissue progenitor cells Breast cancer cells Breast cancer Cell movement Drug resistance 



The authors are grateful to the technical assistance of Silvia Keil. This work was supported by the Verein zur Förderung der Krebsforschung e.V., Heidelberg, Germany and the Fritz-Bender-Foundation, Munich, Germany.


  1. 1.
    Aichel O (1911) Über Zellverschmelzung mit quantitativ abnormer Chromosomenverteilung als Ursache der Geschwulstbildung. In: Roux W (ed) Vorträge und Aufsätze über Entwicklungsmechanik der Organismen. Wilhelm Engelmann, Leipzig, GermanyGoogle Scholar
  2. 2.
    Dittmar T, Nagler C, Schwitalla S et al (2009) Recurrence cancer stem cells—made by cell fusion? Med Hypotheses 73(4):542–547CrossRefPubMedGoogle Scholar
  3. 3.
    Dittmar T, Seidel J, Zänker KS et al (2006) Carcinogenesis driven by bone marrow-derived stem cells. Contrib Microbiol 13:156–169CrossRefPubMedGoogle Scholar
  4. 4.
    Lu X, Kang Y (2009) Cell fusion as a hidden force in tumor progression. Cancer Res 69(22):8536–8539CrossRefPubMedGoogle Scholar
  5. 5.
    Pawelek JM (2000) Tumour cell hybridization and metastasis revisited. Melanoma Res 10(6):507–514CrossRefPubMedGoogle Scholar
  6. 6.
    Mekler LB (1971) Hybridization of transformed cells with lymphocytes as 1 of the probable causes of the progression leading to the development of metastatic malignant cells. Vestn Akad Med Nauk SSSR 26(8):80–89PubMedGoogle Scholar
  7. 7.
    Mekler LB, Drize OB, Osechinskii IV et al (1971) Transformation of a normal differentiated cell of an adult organism, induced by the fusion of this cell with another normal cell of the same organism but with different organ or tissue specificity. Vestn Akad Med Nauk SSSR 26(4):75–80PubMedGoogle Scholar
  8. 8.
    Lu X, Kang Y (2009) Efficient acquisition of dual metastasis organotropism to bone and lung through stable spontaneous fusion between MDA-MB-231 variants. Proc Natl Acad Sci USA 106(23):9385–9390CrossRefPubMedGoogle Scholar
  9. 9.
    Duelli D, Lazebnik Y (2003) Cell fusion: a hidden enemy? Cancer Cell 3(5):445–448CrossRefPubMedGoogle Scholar
  10. 10.
    Duelli DM, Lazebnik YA (2000) Primary cells suppress oncogene-dependent apoptosis. Nat Cell Biol 2(11):859–862CrossRefPubMedGoogle Scholar
  11. 11.
    Bjerkvig R, Tysnes BB, Aboody KS et al (2005) Opinion: the origin of the cancer stem cell: current controversies and new insights. Nat Rev Cancer 5(11):899–904CrossRefPubMedGoogle Scholar
  12. 12.
    Wakeling WF, Greetham J, Bennett DC (1994) Efficient spontaneous fusion between some co-cultured cells, especially murine melanoma cells. Cell Biol Int 18(3):207–210CrossRefPubMedGoogle Scholar
  13. 13.
    Chakraborty AK, Sodi S, Rachkovsky M et al (2000) A spontaneous murine melanoma lung metastasis comprised of host × tumor hybrids. Cancer Res 60(9):2512–2519PubMedGoogle Scholar
  14. 14.
    Andersen TL, Boissy P, Sondergaard TE et al (2007) Osteoclast nuclei of myeloma patients show chromosome translocations specific for the myeloma cell clone: a new type of cancer-host partnership? J Pathol 211(1):10–17CrossRefPubMedGoogle Scholar
  15. 15.
    Busund LT, Killie MK, Bartnes K et al (2002) Spontaneous hybridization of macrophages and Meth A sarcoma cells. Int J Cancer 98(4):573–581CrossRefPubMedGoogle Scholar
  16. 16.
    Busund LT, Killie MK, Bartnes K et al (2002) Spontaneously formed tumorigenic hybrids of Meth A sarcoma and macrophages grow faster and are better vascularized than the parental tumor. Int J Cancer 100(4):407–413CrossRefPubMedGoogle Scholar
  17. 17.
    Pawelek JM, Chakraborty AK (2008) Fusion of tumour cells with bone marrow-derived cells: a unifying explanation for metastasis. Nat Rev Cancer 8(5):377–386CrossRefPubMedGoogle Scholar
  18. 18.
    Rizvi AZ, Swain JR, Davies PS et al (2006) Bone marrow-derived cells fuse with normal and transformed intestinal stem cells. Proc Natl Acad Sci USA 103(16):6321–6325CrossRefPubMedGoogle Scholar
  19. 19.
    Schwitalla S, Seidel J, Keil S et al (2008) Breast stem cells spontaneously fuse with breast cancer cells: Impacts on Cancer Stem Cell formation? Proc Am Assoc Cancer Res 49:5007Google Scholar
  20. 20.
    Vignery A (2005) Macrophage fusion: the making of osteoclasts and giant cells. J Exp Med 202(3):337–340CrossRefPubMedGoogle Scholar
  21. 21.
    Cui W, Cuartas E, Ke J et al (2007) CD200 and its receptor, CD200R, modulate bone mass via the differentiation of osteoclasts. Proc Natl Acad Sci USA 104(36):14436–14441CrossRefPubMedGoogle Scholar
  22. 22.
    Shabo I, Olsson H, Sun XF et al (2009) Expression of the macrophage antigen CD163 in rectal cancer cells is associated with early local recurrence and reduced survival time. Int J Cancer 125(8):1826–1831CrossRefPubMedGoogle Scholar
  23. 23.
    Shabo I, Stal O, Olsson H et al (2008) Breast cancer expression of CD163, a macrophage scavenger receptor, is related to early distant recurrence and reduced patient survival. Int J Cancer 123(4):780–786CrossRefPubMedGoogle Scholar
  24. 24.
    Bjerregaard B, Holck S, Christensen IJ et al (2006) Syncytin is involved in breast cancer-endothelial cell fusions. Cell Mol Life Sci 63(16):1906–1911CrossRefPubMedGoogle Scholar
  25. 25.
    Strick R, Ackermann S, Langbein M et al (2007) Proliferation and cell–cell fusion of endometrial carcinoma are induced by the human endogenous retroviral Syncytin-1 and regulated by TGF-beta. J Mol Med 85(1):23–38CrossRefPubMedGoogle Scholar
  26. 26.
    Larsson LI, Holck S, Christensen IJ (2007) Prognostic role of syncytin expression in breast cancer. Hum Pathol 38(5):726–731CrossRefPubMedGoogle Scholar
  27. 27.
    Larsson LI, Bjerregaard B, Talts JF (2008) Cell fusions in mammals. Histochem Cell Biol 129(5):551–561CrossRefPubMedGoogle Scholar
  28. 28.
    Rachkovsky M, Sodi S, Chakraborty A et al (1998) Melanoma × macrophage hybrids with enhanced metastatic potential. Clin Exp Metastasis 16(4):299–312CrossRefPubMedGoogle Scholar
  29. 29.
    Chakraborty AK, Sousa de Freitas J, Espreafico EM et al (2001) Human monocyte × mouse melanoma fusion hybrids express human gene. Gene 275(1):103–106CrossRefPubMedGoogle Scholar
  30. 30.
    Chang CC, Sun W, Cruz A et al (2001) A human breast epithelial cell type with stem cell characteristics as target cells for carcinogenesis. Radiat Res 155(1 Pt 2):201–207CrossRefPubMedGoogle Scholar
  31. 31.
    Dittmar T, Schafer F, Brandt BH et al (2000) Accelerated assessing of antisense RNA efficacy using a chimeric enhanced green fluorescent protein-antisense RNA-producing vector. Antisense Nucleic Acid Drug Dev 10(5):401–408PubMedGoogle Scholar
  32. 32.
    Heyder C, Gloria-Maercker E, Hatzmann W et al (2005) Role of the beta1-integrin subunit in the adhesion, extravasation and migration of T24 human bladder carcinoma cells. Clin Exp Metastasis 22(2):99–106CrossRefPubMedGoogle Scholar
  33. 33.
    Kassmer SH, Niggemann B, Punzel M et al (2008) Cytokine combinations differentially influence the SDF-1alpha-dependent migratory activity of cultivated murine hematopoietic stem and progenitor cells. Biol Chem 389(7):863–872CrossRefPubMedGoogle Scholar
  34. 34.
    Seidel J, Niggemann B, Punzel M et al (2007) The neurotransmitter gamma-aminobutyric-acid (GABA) is a potent inhibitor of the stromal cell-derived factor-1. Stem Cells Dev 16(5):827–836CrossRefPubMedGoogle Scholar
  35. 35.
    Weidt C, Niggemann B, Hatzmann W et al (2004) Differential effects of culture conditions on the migration pattern of stromal cell-derived factor-stimulated hematopoietic stem cells. Stem Cells 22(6):890–896CrossRefPubMedGoogle Scholar
  36. 36.
    Ying QL, Nichols J, Evans EP et al (2002) Changing potency by spontaneous fusion. Nature 416(6880):545–548CrossRefPubMedGoogle Scholar
  37. 37.
    Charafe-Jauffret E, Ginestier C, Iovino F et al (2009) Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res 69(4):1302–1313CrossRefPubMedGoogle Scholar
  38. 38.
    Dittmar T, Heyder C, Gloria-Maercker E et al (2008) Adhesion molecules and chemokines: the navigation system for circulating tumor (stem) cells to metastasize in an organ-specific manner. Clin Exp Metastasis 25(1):11–32CrossRefPubMedGoogle Scholar
  39. 39.
    Rae JM, Creighton CJ, Meck JM et al (2006) MDA-MB-435 cells are derived from M14 Melanoma cells—a loss for breast cancer, but a boon for melanoma research. Breast Cancer Res Treat 104(1):13–19Google Scholar
  40. 40.
    Sellappan S, Grijalva R, Zhou X et al (2004) Lineage infidelity of MDA-MB-435 cells: expression of melanocyte proteins in a breast cancer cell line. Cancer Res 64(10):3479–3485CrossRefPubMedGoogle Scholar
  41. 41.
    Chambers AF (2009) MDA-MB-435 and M14 cell lines: identical but not M14 melanoma? Cancer Res 69(13):5292–5293CrossRefPubMedGoogle Scholar
  42. 42.
    Wong JH, Aguero B, Gupta RK et al (1988) Recovery of a cell surface fetal antigen from circulating immune complexes of melanoma patients. Cancer Immunol Immunother 27(2):142–146CrossRefPubMedGoogle Scholar
  43. 43.
    Li R, Sonik A, Stindl R et al (2000) Aneuploidy versus gene mutation hypothesis of cancer: recent study claims mutation, but is found to support aneuploidy. Proc Natl Acad Sci USA 97:3236–3241CrossRefPubMedGoogle Scholar
  44. 44.
    Miller FR, Mohamed AN, McEachern D (1989) Production of a more aggressive tumor cell variant by spontaneous fusion of two mouse tumor subpopulations. Cancer Res 49(15):4316–4321PubMedGoogle Scholar
  45. 45.
    Longley DB, Johnston PG (2005) Molecular mechanisms of drug resistance. J Pathol 205(2):275–292CrossRefPubMedGoogle Scholar
  46. 46.
    Szakacs G, Paterson JK, Ludwig JA et al (2006) Targeting multidrug resistance in cancer. Nat Rev Drug Discov 5(3):219–234CrossRefPubMedGoogle Scholar
  47. 47.
    Dean M, Fojo T, Bates S (2005) Tumour stem cells and drug resistance. Nat Rev Cancer 5(4):275–284CrossRefPubMedGoogle Scholar
  48. 48.
    Hembruff SL, Laberge ML, Villeneuve DJ et al (2008) Role of drug transporters and drug accumulation in the temporal acquisition of drug resistance. BMC Cancer 8:318CrossRefPubMedGoogle Scholar
  49. 49.
    Duesberg P, Stindl R, Hehlmann R (2000) Explaining the high mutation rates of cancer cells to drug and multidrug resistance by chromosome reassortments that are catalyzed by aneuploidy. Proc Natl Acad Sci USA 19(26):14295–14300CrossRefGoogle Scholar
  50. 50.
    Duesberg P, Stindl R, Hehlmann R (2001) Origin of multidrug resistance in cells with and without multidrug resistance genes: chromosome reassortments catalyzed by aneuploidy. Proc Natl Acad Sci USA 98(20):11283–11288CrossRefPubMedGoogle Scholar
  51. 51.
    Brandt BH, Roetger A, Dittmar T et al (1999) c-erbB-2/EGFR as dominant heterodimerization partners determine a motogenic phenotype in human breast cancer cells. FASEB J 13(14):1939–1949PubMedGoogle Scholar
  52. 52.
    Dittmar T, Husemann A, Schewe Y et al (2002) Induction of cancer cell migration by epidermal growth factor is initiated by specific phosphorylation of tyrosine 1248 of c-erbB-2 receptor via EGFR. FASEB J 16(13):1823–1825PubMedGoogle Scholar
  53. 53.
    Hsieh AC, Moasser MM (2007) Targeting HER proteins in cancer therapy and the role of the non-target HER3. Br J Cancer 97(4):453–457CrossRefPubMedGoogle Scholar
  54. 54.
    Stern DF (2008) ERBB3/HER3 and ERBB2/HER2 duet in mammary development and breast cancer. J Mammary Gland Biol Neoplasia 13(2):215–223CrossRefPubMedGoogle Scholar
  55. 55.
    Rachkovsky M, Pawelek J (1999) Acquired melanocyte stimulating hormone-inducible chemotaxis following macrophage fusion with Cloudman S91 melanoma cells. Cell Growth Differ 10(7):517–524PubMedGoogle Scholar
  56. 56.
    Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3(6):453–458CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Thomas Dittmar
    • 1
    Email author
  • Sarah Schwitalla
    • 2
  • Jeanette Seidel
    • 3
  • Sonja Haverkampf
    • 1
  • Georg Reith
    • 1
  • Sönke Meyer-Staeckling
    • 4
  • Burkhard H. Brandt
    • 4
  • Bernd Niggemann
    • 1
  • Kurt S. Zänker
    • 1
  1. 1.Institute of ImmunologyZentrum für Biomedizinische Ausbildung und Forschung an der UWH (ZBAF), Witten/Herdecke UniversityWittenGermany
  2. 2.2nd Department of MedicineKlinikum rechts der Isar, Technical University of MunichMunichGermany
  3. 3.Medizinische Klinik II m.S. Hämatologie/OnkologieBerlinGermany
  4. 4.Department of Tumor BiologyUniversity Hospital Hamburg-EppendorfHamburgGermany

Personalised recommendations