Clinical & Experimental Metastasis

, Volume 28, Issue 1, pp 55–63 | Cite as

Prognostic significance of claudin expression changes in breast cancer with regional lymph node metastasis

  • A. M. Szasz
  • A. M. Tokes
  • M. Micsinai
  • T. Krenacs
  • Cs. Jakab
  • L. Lukacs
  • Zs. Nemeth
  • Zs. Baranyai
  • K. Dede
  • L. Madaras
  • J. Kulka
Research Paper

Abstract

Adherent and tight junction molecules have been described to contribute to carcinogenesis and tumor progression. Additionally, the group of claudin-low tumors have recently been identified as a molecular subgroup of breast carcinoma. In our study, we examined the expression pattern of claudins, beta-catenin and E-cadherin in invasive ductal (IDCs) and lobular (ILCs) carcinomas and their corresponding lymph node metastases (LNMs). Tissue microarrays of 97 breast samples (60 invasive ductal carcinomas, 37 invasive lobular carcinomas) and their corresponding LNMs have been analyzed immunohistochemically for claudin-1, -2, -3, -4, -5, -7, beta-catenin and E-cadherin expression. The stained slides were digitalized with a slide scanner and the reactions were evaluated semiquantitatively. When compared to LNMs, in the IDC group beta-catenin and claudin-2, -3, -4 and -7 protein expression showed different pattern while claudin-1, -2, -3, -4 and -7 were differently expressed in the ILC group. Lymph node metastases developed a notable increase of claudin-5 expression in both groups. Decrease or loss of claudin-1 and expression of claudin-4 in lymph node metastases correlated with reduced disease-free survival in our patients. According to our observations, the expression of epithelial junctional molecules, especially claudins, is different in primary breast carcinomas compared to their lymph node metastases as demonstrated by immunohistochemistry. Loss of claudin junctional molecules might contribute to tumor progression, and certain claudin expression pattern might be of prognostic relevance.

Keywords

Breast cancer Lymph node metastasis Tissue microarray Claudin Prognosis 

Abbreviations

CLDN

Claudin (gene)

CPE

Clostridium perfringens enterotoxin

EMT

Epithelial–mesenchymal transition

MET

Mesenchymal–epithelial transition

IDC

Invasive ductal carcinoma

ILC

Invasive lobular carcinoma

LNM

Lymph node metastasis

PCR

Polymerase chain reaction

TJ

Tight junction

Notes

Acknowledgments

The authors thank the kind help of Azumah Francisné, Pekár Zoltánné and Samodai Erika in the preparation of slides and immunohistochemistry. The study was supported by the following grants: ETT-049/2006, OTKA-49559/2005, Rosztóczy Foundation.

Conflict of interests

The authors have no interests to disclose.

Supplementary material

10585_2010_9357_MOESM1_ESM.docx (14 kb)
Supplementary material 1 (DOCX 14 kb)

References

  1. 1.
    Paul S, Dey A (2008) Wnt signaling and cancer development: therapeutic implication. Neoplasma 55(3):165–176PubMedGoogle Scholar
  2. 2.
    Morin PJ (1999) Beta-catenin signaling and cancer. Bioessays 21(12):1021–1030CrossRefPubMedGoogle Scholar
  3. 3.
    Saldanha G, Ghura V, Potter L et al (2004) Nuclear beta-catenin in basal cell carcinoma correlates with increased proliferation. Br J Dermatol 151(1):157–164CrossRefPubMedGoogle Scholar
  4. 4.
    Hashizume R, Koizumi H, Ihara A et al (1996) Expression of beta-catenin in normal breast tissue and breast carcinoma: a comparative study with epithelial cadherin and alpha-catenin. Histopathology 29(2):139–146CrossRefPubMedGoogle Scholar
  5. 5.
    De Leeuw WJ, Berx G, Vos CB et al (1997) Simultaneous loss of E-cadherin and catenins in invasive lobular breast cancer and lobular carcinoma in situ. J Pathol 183(4):404–411CrossRefPubMedGoogle Scholar
  6. 6.
    Karayiannakis AJ, Nakopoulou L, Gakiopoulou H et al (2001) Expression patterns of beta-catenin in in situ and invasive breast cancer. Eur J Surg Oncol 27(1):31–36CrossRefPubMedGoogle Scholar
  7. 7.
    Mastracci TL, Tjan S, Bane AL et al (2005) E-cadherin alterations in atypical lobular hyperplasia and lobular carcinoma in situ of the breast. Mod Pathol 18(6):741–751CrossRefPubMedGoogle Scholar
  8. 8.
    Kuroda H, Tamaru J, Takeuchi I et al (2006) Expression of E-cadherin, alpha-catenin, and beta-catenin in tubulolobular carcinoma of the breast. Virchows Arch 448(4):500–505CrossRefPubMedGoogle Scholar
  9. 9.
    Furuse M, Fujita K, Hiiragi T et al (1998) Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol 141(7):1539–1550CrossRefPubMedGoogle Scholar
  10. 10.
    Hewitt KJ, Agarwal R, Morin PJ (2006) The claudin gene family: expression in normal and neoplastic tissues. BMC Cancer 6:186CrossRefPubMedGoogle Scholar
  11. 11.
    Kulka J, Tokes AM (2005) Claudin expression in breast tumors. Hum Pathol 36(7):859 (author reply 60)CrossRefPubMedGoogle Scholar
  12. 12.
    Morohashi S, Kusumi T, Sato F et al (2007) Decreased expression of claudin-1 correlates with recurrence status in breast cancer. Int J Mol Med 20(2):139–143PubMedGoogle Scholar
  13. 13.
    Kim TH, Huh JH, Lee S et al (2008) Down-regulation of claudin-2 in breast carcinomas is associated with advanced disease. Histopathology 53(1):48–55CrossRefPubMedGoogle Scholar
  14. 14.
    Tokes AM, Kulka J, Paku S et al (2005) Claudin-1, -3 and -4 proteins and mRNA expression in benign and malignant breast lesions: a research study. Breast Cancer Res 7(2):R296–R305CrossRefPubMedGoogle Scholar
  15. 15.
    Blackman B, Russell T, Nordeen SK et al (2005) Claudin 7 expression and localization in the normal murine mammary gland and murine mammary tumors. Breast Cancer Res 7(2):R248–R255CrossRefPubMedGoogle Scholar
  16. 16.
    Kominsky SL, Argani P, Korz D et al (2003) Loss of the tight junction protein claudin-7 correlates with histological grade in both ductal carcinoma in situ and invasive ductal carcinoma of the breast. Oncogene 22(13):2021–2033CrossRefPubMedGoogle Scholar
  17. 17.
    Sauer T, Pedersen MK, Ebeltoft K et al (2005) Reduced expression of claudin-7 in fine needle aspirates from breast carcinomas correlate with grading and metastatic disease. Cytopathology 16(4):193–198CrossRefPubMedGoogle Scholar
  18. 18.
    Blanchard AA, Skliris GP, Watson PH et al (2009) Claudins 1, 3, and 4 protein expression in ER negative breast cancer correlates with markers of the basal phenotype. Virchows Arch 454(6):647–656Google Scholar
  19. 19.
    Kulka J, Szasz AM, Nemeth Z et al (2009) Expression of tight junction protein claudin-4 in basal-like breast carcinomas. Pathol Oncol Res 15(1):59–64CrossRefPubMedGoogle Scholar
  20. 20.
    Lanigan F, McKiernan E, Brennan DJ et al (2009) Increased claudin-4 expression is associated with poor prognosis and high tumour grade in breast cancer. Int J Cancer 124(9):2088–2097CrossRefPubMedGoogle Scholar
  21. 21.
    Soini Y (2005) Expression of claudins 1, 2, 3, 4, 5 and 7 in various types of tumours. Histopathology 46(5):551–560CrossRefPubMedGoogle Scholar
  22. 22.
    Park D, Karesen R, Axcrona U et al (2007) Expression pattern of adhesion molecules (E-cadherin, alpha-, beta-, gamma-catenin and claudin-7), their influence on survival in primary breast carcinoma, and their corresponding axillary lymph node metastasis. APMIS 115(1):52–65CrossRefPubMedGoogle Scholar
  23. 23.
    Herschkowitz JI, Simin K, Weigman VJ et al (2007) Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol 8(5):R76CrossRefPubMedGoogle Scholar
  24. 24.
    Hennessy BT, Gonzalez-Angulo AM, Stemke-Hale K et al (2009) Characterization of a naturally occurring breast cancer subset enriched in epithelial-to-mesenchymal transition and stem cell characteristics. Cancer Res 69(10):4116–4124CrossRefPubMedGoogle Scholar
  25. 25.
    Sorlie T, Perou CM, Tibshirani R et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98(19):10869–10874CrossRefPubMedGoogle Scholar
  26. 26.
    Kulka J, Szasz A, Nemeth Z et al (2009) Expression of tight junction protein claudin-4 in basal-like breast carcinomas. Pathol Oncol Res 15(1):59–64Google Scholar
  27. 27.
    Eckel-Passow J, Lohse C, Sheinin Y et al (2010) Tissue microarrays: one size does not fit all. Diagn Pathol 5(1):48CrossRefPubMedGoogle Scholar
  28. 28.
    Avninder S, Ylaya K, Hewitt S (2008) Tissue microarray: a simple technology that has revolutionized research in pathology. J Postgrad Med 54(2):158–162Google Scholar
  29. 29.
    Drury S, Salter J, Baehner FL et al (2010) Feasibility of using tissue microarray cores of paraffin-embedded breast cancer tissue for measurement of gene expression: a proof-of-concept study. J Clin Pathol 63(6):513–517CrossRefPubMedGoogle Scholar
  30. 30.
    Soini Y (2004) Claudins 2, 3, 4, and 5 in Paget’s disease and breast carcinoma. Hum Pathol 35(12):1531–1536CrossRefPubMedGoogle Scholar
  31. 31.
    Chao YC, Pan SH, Yang SC et al (2009) Claudin-1 is a metastasis suppressor and correlates with clinical outcome in lung adenocarcinoma. Am J Respir Crit Care Med 179(2):123–133CrossRefPubMedGoogle Scholar
  32. 32.
    Fritzsche FR, Oelrich B, Johannsen M et al (2008) Claudin-1 protein expression is a prognostic marker of patient survival in renal cell carcinomas. Clin Cancer Res 14(21):7035–7042CrossRefPubMedGoogle Scholar
  33. 33.
    Higashi Y, Suzuki S, Sakaguchi T et al (2007) Loss of claudin-1 expression correlates with malignancy of hepatocellular carcinoma. J Surg Res 139(1):68–76CrossRefPubMedGoogle Scholar
  34. 34.
    Lechpammer M, Resnick MB, Sabo E et al (2008) The diagnostic and prognostic utility of claudin expression in renal cell neoplasms. Mod Pathol 21(11):1320–1329CrossRefPubMedGoogle Scholar
  35. 35.
    Resnick MB, Konkin T, Routhier J et al (2005) Claudin-1 is a strong prognostic indicator in stage II colonic cancer: a tissue microarray study. Mod Pathol 18(4):511–518CrossRefPubMedGoogle Scholar
  36. 36.
    Lanigan F, McKiernan E, Brennan DJ et al (2008) Increased claudin-4 expression is associated with poor prognosis and high tumour grade in breast cancer. Int J Cancer 124:2088–2097Google Scholar
  37. 37.
    Krajewska M, Olson AH, Mercola D et al (2007) Claudin-1 immunohistochemistry for distinguishing malignant from benign epithelial lesions of prostate. Prostate 67(9):907–910CrossRefPubMedGoogle Scholar
  38. 38.
    Landers KA, Samaratunga H, Teng L et al (2008) Identification of claudin-4 as a marker highly overexpressed in both primary and metastatic prostate cancer. Br J Cancer 99(3):491–501CrossRefPubMedGoogle Scholar
  39. 39.
    Wang M, Xue L, Cao Q et al (2009) Expression of Notch1, Jagged1 and beta-catenin and their clinicopathological significance in hepatocellular carcinoma. Neoplasma 56(6):533–541CrossRefPubMedGoogle Scholar
  40. 40.
    Orsulic S, Huber O, Aberle H et al (1999) E-cadherin binding prevents beta-catenin nuclear localization and beta-catenin/LEF-1-mediated transactivation. J Cell Sci 112(Pt 8):1237–1245PubMedGoogle Scholar
  41. 41.
    Birchmeier C, Birchmeier W, Brand-Saberi B (1996) Epithelial–mesenchymal transitions in cancer progression. Acta Anat 156(3):217–226CrossRefPubMedGoogle Scholar
  42. 42.
    Yang J, Weinberg RA (2008) Epithelial–mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell 14(6):818–829CrossRefPubMedGoogle Scholar
  43. 43.
    Hugo H, Ackland ML, Blick T et al (2007) Epithelial–mesenchymal and mesenchymal–epithelial transitions in carcinoma progression. J Cell Physiol 213(2):374–383CrossRefPubMedGoogle Scholar
  44. 44.
    Huber MA, Kraut N, Beug H (2005) Molecular requirements for epithelial–mesenchymal transition during tumor progression. Curr Opin Cell Biol 17(5):548–558CrossRefPubMedGoogle Scholar
  45. 45.
    Thiery JP, Acloque H, Huang RY et al (2009) Epithelial–mesenchymal transitions in development and disease. Cell 139(5):871–890CrossRefPubMedGoogle Scholar
  46. 46.
    Onder TT, Gupta PB, Mani SA et al (2008) Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res 68(10):3645–3654CrossRefPubMedGoogle Scholar
  47. 47.
    Creighton CJ, Chang JC, Rosen JM Epithelial–mesenchymal transition (EMT) in tumor-initiating cells and its clinical implications in breast cancer. J Mammary Gland Biol NeoplasiaGoogle Scholar
  48. 48.
    Perou C (2009) Overview of gene expression profiling and novel translational technologies in breast cancer. Cancer Res 69(24_Meeting Abstracts):ES3-1Google Scholar
  49. 49.
    Szasz AM, Micsinai M, Tokes A et al (2009) Proteomic profiling of breast carcinomas based on claudin expression pattern. Cancer Res 69(24_Meeting Abstracts):6123Google Scholar
  50. 50.
    Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70CrossRefPubMedGoogle Scholar
  51. 51.
    Yoshida R, Kimura N, Harada Y et al (2001) The loss of E-cadherin, alpha- and beta-catenin expression is associated with metastasis and poor prognosis in invasive breast cancer. Int J Oncol 18(3):513–520PubMedGoogle Scholar
  52. 52.
    Bukholm IK, Nesland JM, Karesen R et al (1998) E-cadherin and alpha-, beta-, and gamma-catenin protein expression in relation to metastasis in human breast carcinoma. J Pathol 185(3):262–266CrossRefPubMedGoogle Scholar
  53. 53.
    Cowin P, Rowlands TM, Hatsell SJ (2005) Cadherins and catenins in breast cancer. Curr Opin Cell Biol 17(5):499–508CrossRefPubMedGoogle Scholar
  54. 54.
    Goyal A, Martin TA, Mansel RE et al (2008) Real time PCR analyses of expression of E-cadherin, alpha-, beta- and gamma-catenin in human breast cancer for predicting clinical outcome. World J Surg Oncol 6:56CrossRefPubMedGoogle Scholar
  55. 55.
    Gyorffy H, Holczbauer A, Nagy P et al (2005) Claudin expression in Barrett’s esophagus and adenocarcinoma. Virchows Arch 447(6):961–968CrossRefPubMedGoogle Scholar
  56. 56.
    Lodi C, Szabo E, Holczbauer A et al (2006) Claudin-4 differentiates biliary tract cancers from hepatocellular carcinomas. Mod Pathol 19(3):460–469CrossRefPubMedGoogle Scholar
  57. 57.
    Szabo I, Kiss A, Schaff Z et al (2009) Claudins as diagnostic and prognostic markers in gynecological cancer. Histol Histopathol 24(12):1607–1615PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • A. M. Szasz
    • 1
  • A. M. Tokes
    • 1
  • M. Micsinai
    • 2
  • T. Krenacs
    • 3
  • Cs. Jakab
    • 4
  • L. Lukacs
    • 1
  • Zs. Nemeth
    • 1
  • Zs. Baranyai
    • 5
  • K. Dede
    • 5
  • L. Madaras
    • 1
  • J. Kulka
    • 1
  1. 1.2nd Department of PathologySemmelweis UniversityBudapestHungary
  2. 2.Sackler InstituteNew York UniversityNew YorkUSA
  3. 3.1st Department of Pathology and Experimental Cancer ResearchSemmelweis UniversityBudapestHungary
  4. 4.Department of Pathology and Forensic Veterinary Medicine, Faculty of Veterinary MedicineSzent Istvan UniversityBudapestHungary
  5. 5.Department of Surgery and Vascular SurgeryUzsoki Memorial HospitalBudapestHungary

Personalised recommendations