Clinical & Experimental Metastasis

, Volume 27, Issue 3, pp 185–196 | Cite as

In vitro metastatic colonization of human ovarian cancer cells to the omentum

  • Shaheena M. Khan
  • Holly M. Funk
  • Sophie Thiolloy
  • Tamara L. Lotan
  • Jonathan Hickson
  • Gail S. Prins
  • Angela F. Drew
  • Carrie W. Rinker-SchaefferEmail author
Research Paper


Despite the potentially crucial contributions of the omentum in the regulation of ovarian cancer metastatic growth, it remains a poorly understood organ. Due to its anatomic location and structural fragility, the omentum presents inherent challenges to mechanism-based in vivo studies. Thus, the availability of an ex vivo omental model would, in part, address some of these difficulties posed. Here we describe a technique for identifying, isolating and maintaining ex vivo cultures of omenta from immune-compromised and -competent mice. Ex vivo culture conditions were developed that maintain tissue viability, architecture, and function for up to 10 days. Further experiments demonstrate that the ex vivo culture conditions allow for the proliferation of ovarian cancer cells in vitro and support a similar pattern of microscopic lesions after either intraperitoneal injection of ovarian cancer cells or co-culture of ovarian cancer cells with the omentum. In agreement with previous studies from our laboratory, histologic evaluation of these specimens found that ovarian cancer cells, as well as other peritoneal cancer cells, preferentially accumulate in, and colonize, omental areas rich in immune cells. We now recognize that these are specific, functional structures referred to as milky spots. In sum, these are foundational studies of a readily accessible model, which is easily manipulated and can be immediately used to study the dynamic process of omental colonization. It is hoped that investigators will use the data herein as a starting point for refinements and modifications which will enable them to tailor the model to the specific needs of the experimental question(s) they wish to pursue.


Omentum Ovarian cancer Metastatic colonization Milky spots Immune aggregates 



Hematoxylin and eosin


Phosphate buffered saline


Carbon dioxide


Fetal calf serum


Green fluorescent protein


Insulin transferrin and selenium solution


Days post injection



We would like to thank Ms. Jennifer Taylor for her support and assistance in the conducting the intraperitoneal injections and for generously providing the SKOV3ip.1-GFP tagged cells for use in this study. We appreciate the supportive and enthusiastic input of Dr. Karl Matlin and Dr. Jerry Turner of the University of Chicago as we developed work reported herein. We appreciate the superb technical support and assistance of Dr. Lynnette Gerhold of the University of Chicago Optical Imaging Core Facility and Ms. Shirley Bond of the University of Chicago Biological Sciences Division Microscopy Core Facility. This work was made possible by the generous philanthropic support of The University of Chicago Section of Urology and grants from The Department of Defense Ovarian Cancer Research Program (W81XWH-09-0127) and the National Cancer Institute (2R01CA089569-06A2).


  1. 1.
    Jemal A, Siegel R, Ward E et al (2009) Cancer statistics, 2009. CA Cancer J Clin 59(4):225–249CrossRefPubMedGoogle Scholar
  2. 2.
    Ozols RF, Bookman MA, Connolly DC et al (2004) Focus on epithelial ovarian cancer. Cancer Cell 5(1):19–24CrossRefPubMedGoogle Scholar
  3. 3.
    Covens AL (2000) A critique of surgical cytoreduction in advanced ovarian cancer. Gynecol Oncol 78:269–274Google Scholar
  4. 4.
    Bristow RE, Puri I, Chi DS (2009) Cytoreductive surgery for recurrent ovarian cancer: a meta-analysis. Gynecol Oncol 112(1):265–274CrossRefPubMedGoogle Scholar
  5. 5.
    Bristow RE, Chi DS (2006) Platinum-based neoadjuvant chemotherapy and interval surgical cytoreduction for advanced ovarian cancer: a meta-analysis. Gynecol Oncol 103(3):1070–1076CrossRefPubMedGoogle Scholar
  6. 6.
    Smith SC, Theodorescu D (2009) Learning therapeutic lessons from metastasis suppressor proteins. Nat Rev Cancer 9(4):253–264CrossRefPubMedGoogle Scholar
  7. 7.
    Bodenstine TM, Welch DR (2008) Metastasis suppressors and the tumor microenvironment. Cancer Microenviron 1(1):1–11CrossRefPubMedGoogle Scholar
  8. 8.
    Schwartz PE (1981) Surgical management of ovarian cancer. Arch Surg 116(1):99–106PubMedGoogle Scholar
  9. 9.
    Buy JN, Moss AA, Ghossain MA et al (1988) Peritoneal implants from ovarian tumors: CT findings. Radiology 169(3):691–694PubMedGoogle Scholar
  10. 10.
    Wilkosz S, Ireland G, Khwaja N et al (2005) A comparative study of the structure of human and murine greater omentum. Anat Embryol (Berl) 209(3):251–261CrossRefGoogle Scholar
  11. 11.
    Simer PH (1948) The drainage of particulate matter from the peritoneal cavity into the lymph vessels of the diaphragm. Anat Rec 101(3):333–351CrossRefPubMedGoogle Scholar
  12. 12.
    Pond CM (2005) Adipose tissue and the immune system. Prostaglandins Leukot Essent Fatty Acids 73(1):17–30CrossRefPubMedGoogle Scholar
  13. 13.
    Liebermann-Meffert D (2000) The greater omentum. Anatomy, embryology, and surgical applications. Surg Clin North Am 80(1):275–293 (xii)Google Scholar
  14. 14.
    Gerber SA, Rybalko VY, Bigelow CE et al (2006) Preferential attachment of peritoneal tumor metastases to omental immune aggregates and possible role of a unique vascular microenvironment in metastatic survival and growth. Am J Pathol 169(5):1739–1752CrossRefPubMedGoogle Scholar
  15. 15.
    Kenny HA, Krausz T, Yamada SD et al (2007) Use of a novel 3D culture model to elucidate the role of mesothelial cells, fibroblasts and extra-cellular matrices on adhesion and invasion of ovarian cancer cells to the omentum. Int J Cancer 121(7):1463–1472CrossRefPubMedGoogle Scholar
  16. 16.
    Zhang XY, Pettengell R, Nasiri N et al (1999) Characteristics and growth patterns of human peritoneal mesothelial cells: comparison between advanced epithelial ovarian cancer and non-ovarian cancer sources. J Soc Gynecol Investig 6(6):333–340CrossRefPubMedGoogle Scholar
  17. 17.
    Stylianou E, Jenner LA, Davies M et al (1990) Isolation, culture and characterization of human peritoneal mesothelial cells. Kidney Int 37(6):1563–1570CrossRefPubMedGoogle Scholar
  18. 18.
    Nakanishi M, Hamazaki TS, Komazaki S et al (2007) Pancreatic tissue formation from murine embryonic stem cells in vitro. Differentiation 75(1):1–11CrossRefPubMedGoogle Scholar
  19. 19.
    Nakamura M, Katabuchi H, Ohba T et al (1994) Isolation, growth and characteristics of human ovarian surface epithelium. Virchows Arch 424(1):59–67CrossRefPubMedGoogle Scholar
  20. 20.
    Murray H (1994) Human omental mesothelial cells: a simple method for isolation and discrimination from endothelial cells. In Vitro Cell Dev Biol 30:145–147CrossRefGoogle Scholar
  21. 21.
    Lai KN, Ho SK, Leung J et al (2001) Increased survival of mesothelial cells from the peritoneum in peritoneal dialysis fluid. Cell Biol Int 25(5):445–450CrossRefPubMedGoogle Scholar
  22. 22.
    Hjelle JT, Golinska BT, Waters DC et al (1989) Isolation and propagation in vitro of peritoneal mesothelial cells. Perit Dial Int 9(4):341–347PubMedGoogle Scholar
  23. 23.
    Fedorko ME, Hirsch JG, Fried B (1971) Studies on transport of macromolecules and small particles across mesothelial cells of the mouse omentum. II. Kinetic features and metabolic requirements. Exp Cell Res 69(2):313–323Google Scholar
  24. 24.
    Bot J, Whitaker D, Vivian J et al (2003) Culturing mouse peritoneal mesothelial cells. Pathol Res Pract 199(5):341–344CrossRefPubMedGoogle Scholar
  25. 25.
    Hickson JA, Huo D, Vander Griend DJ et al (2006) The p38 kinases MKK4 and MKK6 suppress metastatic colonization in human ovarian carcinoma. Cancer Res 66(4):2264–2270CrossRefPubMedGoogle Scholar
  26. 26.
    Delves PJ, Martin, SJ, Burton DR, Roitt IM (2006) Roitt’s essential immunology. Blackwell, MaldenGoogle Scholar
  27. 27.
    Lotan T, Hickson J, Souris J, et al. (2008) c-Jun NH2-terminal kinase activating kinase 1/mitogen-activated protein kinase kinase 4-mediated inhibition of SKOV3ip.1 ovarian cancer metastasis involves growth arrest and p21 up-regulation. Cancer Res 68(7):2166–2175Google Scholar
  28. 28.
    Ranvier H (1874) Du developpement t de l’accroissement des vaisseaux sanguins. Arch Physiol 1:429Google Scholar
  29. 29.
    Strobel T, Swanson L, Cannistra SA (1997) In vivo inhibition of CD44 limits intra-abdominal spread of a human ovarian cancer xenograft in nude mice: a novel role for CD44 in the process of peritoneal implantation. Cancer Res 57(7):1228–1232PubMedGoogle Scholar
  30. 30.
    Rieppi M, Vergani V, Gatto C et al (1999) Mesothelial cells induce the motility of human ovarian carcinoma cells. Int J Cancer 80(2):303–307CrossRefPubMedGoogle Scholar
  31. 31.
    Ahmed N, Oliva K, Wang Y et al (2003) Downregulation of urokinase plasminogen activator receptor expression inhibits Erk signalling with concomitant suppression of invasiveness due to loss of uPAR-beta1 integrin complex in colon cancer cells. Br J Cancer 89(2):374–384CrossRefPubMedGoogle Scholar
  32. 32.
    Recklinghausen FTv (1863) Uber Eiter und Bindegewebskorperchen. Virchow’s Arch 28:157–197Google Scholar
  33. 33.
    Recklinghausen FTv (1863) Zur Fettresorption. Virchow’s Arch 26:172–208Google Scholar
  34. 34.
    Mironov VA, Gusev SA, Baradi AF (1979) Mesothelial stomata overlying omental milky spots: scanning electron microscopic study. Cell Tissue Res 201(2):327–330CrossRefPubMedGoogle Scholar
  35. 35.
    Sorensen EW, Gerber SA, Sedlacek AL et al. (2009) Omental immune aggregates and tumor metastasis within the peritoneal cavity. Immunol Res 45(2–3):185–194CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Shaheena M. Khan
    • 1
    • 2
  • Holly M. Funk
    • 3
  • Sophie Thiolloy
    • 1
  • Tamara L. Lotan
    • 4
  • Jonathan Hickson
    • 5
  • Gail S. Prins
    • 6
  • Angela F. Drew
    • 3
  • Carrie W. Rinker-Schaeffer
    • 1
    • 2
    • 7
    Email author
  1. 1.Department of Surgery, Section of Urology MC6038The University of ChicagoChicagoUSA
  2. 2.Department of PathologyThe University of ChicagoChicagoUSA
  3. 3.Department of Cancer and Cell BiologyUniversity of CincinnatiCincinnatiUSA
  4. 4.Department of PathologyThe Johns Hopkins University School of MedicineBaltimoreUSA
  5. 5.Abbot LaboratoriesAbbot ParkUSA
  6. 6.Department of UrologyThe University of Illinois at ChicagoChicagoUSA
  7. 7.Departments of Obstetrics and Gynecology and MedicineThe University of ChicagoChicagoUSA

Personalised recommendations