Advertisement

Mechanisms and pathways of bone metastasis: challenges and pitfalls of performing molecular research on patient samples

  • T. R. Cawthorn
  • E. Amir
  • R. Broom
  • O. Freedman
  • D. Gianfelice
  • D. Barth
  • D. Wang
  • I. Holen
  • S. J. Done
  • M. ClemonsEmail author
Research Paper

Abstract

The molecular mechanisms underlying the development of bone metastases in breast cancer remain unclear. Disseminated tumour cells (DTCs) in the bone marrow of breast cancer patients are commonly identified, even in early stage disease, but their potential to initiate metastases is not known. The mechanism whereby DTCs become overt metastatic tumour cells (MTCs) is therefore, an area of considerable interest. This study explored the analysable yield of genetic material from human biopsy samples in order to describe differences in gene expression between DTCs and bone MTCs. Thirteen breast cancer patients with bone metastases underwent a CT-guided bone metastasis biopsy and a bone marrow biopsy. Tumour cells were enriched and gene expression profiling was conducted to identify differentially expressed genes. The analysable yield of sufficient RNA for microarray analysis was 60% from bone metastasis biopsies and 80% from bone marrow biopsies. A signature of 133 candidate genes differentially expressed between DTCs and MTCs was identified. Several genes relevant to breast cancer metastasis to bone (osteopontin, CTGF, parathyroid hormone receptor, EGFR) were significantly overexpressed in MTCs as compared to DTCs. Biopsies of bone metastases and bone marrow rarely yield enough tissue for robust molecular biology studies using clinical samples. The findings obtained however are interesting and seem to overlap with the bone metastasis gene expression signature described in murine xenograft models. Larger biopsy specimens or improved RNA extraction techniques may improve analysable yield and feasibility of these techniques.

Keywords

Breast cancer Bone metastasis Disseminated tumour cells Feasibility Gene expression profiling 

Abbreviations

cDNA

Complimentary deoxyribonucleic acid

cRNA

Complimentary ribonucleic acid

CT

Computed tomography

CTC

Circulating tumour cell

DNA

Deoxyribonucleic acid

DTC

Disseminated tumour cell

EpCAM

Epithelial cell adhesion molecule

mRNA

Messenger ribonucleic acid

QT-PCR

Real time quantitative polymerase chain reaction

RNA

Ribonucleic acid

References

  1. 1.
    Coleman RE (1997) Skeletal complications of malignancy. Cancer 80:1588–1594CrossRefPubMedGoogle Scholar
  2. 2.
    Langer I, Guller U, Koechli OR et al (2007) Association of the presence of bone marrow micrometastases with the sentinel lymph node status in 410 early stage breast cancer patients: results of the swiss multicenter study. Ann Surg Oncol 14:1896–1903CrossRefPubMedGoogle Scholar
  3. 3.
    Braun S, Pantel K (2001) Clinical significance of occult metastatic cells in bone marrow of breast cancer patients. Oncologist 6:125–132CrossRefPubMedGoogle Scholar
  4. 4.
    Janni W, Hepp F, Rjosk D et al (2001) The fate and prognostic value of occult metastatic cells in the bone marrow of patients with breast carcinoma between primary treatment and recurrence. Cancer 92:46–53CrossRefPubMedGoogle Scholar
  5. 5.
    Braun S, Vogl FD, Naume B et al (2005) A pooled analysis of bone marrow micrometastasis in breast cancer. N Engl J Med 353:793–802CrossRefPubMedGoogle Scholar
  6. 6.
    Powles T, Paterson A, McCloskey E et al (2006) Reduction in bone relapse and improved survival with oral clodronate for adjuvant treatment of operable breast cancer. Breast Cancer Res 8:1–7Google Scholar
  7. 7.
    Diel IJ, Jaschke A, Solomayer EF et al (2008) Adjuvant oral clodronate improves the overall survival of primary breast cancer patients with micrometastases to the bone marrow: a long-term follow-up. Ann Oncol 19:2007–2011CrossRefPubMedGoogle Scholar
  8. 8.
    Gnant M, Mlineritsch B, Schippinger W et al (2009) Endocrine therapy plus zoledronic acid in premenopausal breast cancer. N Engl J Med 360:679–691CrossRefPubMedGoogle Scholar
  9. 9.
    Lipton A, Theriault RL, Hortobagyi GN et al (2000) Pamidronate prevents skeletal complications and is effective palliative treatment in women with breast carcinoma and osteolytic bone metastases: long term follow-up of two randomized, placebo-controlled trials. Cancer 88:1082–1090CrossRefPubMedGoogle Scholar
  10. 10.
    Kohno N, Aogi K, Minami H et al (2005) Zoledronic acid significantly reduces skeletal complications compared with placebo in Japanese women with bone metastases from breast cancer: a randomized, placebo-controlled trial. J Clin Oncol 23:3314–3321CrossRefPubMedGoogle Scholar
  11. 11.
    Hortobagyi GN, Theriault RL, Lipton A et al (1998) Long-term prevention of skeletal complications of metastatic breast cancer with pamidronate. Protocol 19 Aredia Breast Cancer Study Group. J Clin Oncol 16:2038–2044PubMedGoogle Scholar
  12. 12.
    Theriault RL, Lipton A, Hortobagyi GN et al (1999) Pamidronate reduces skeletal morbidity in women with advanced breast cancer and lytic bone lesions: a randomized, placebo-controlled trial. Protocol 18 Aredia Breast Cancer Study Group. J Clin Oncol 17:846–854PubMedGoogle Scholar
  13. 13.
    Conte PF, Latreille J, Mauriac L et al (1996) Delay in progression of bone metastases in breast cancer patients treated with intravenous pamidronate: results from a multinational randomized controlled trial. J Clin Oncol 14:2552–2559PubMedGoogle Scholar
  14. 14.
    Hultborn R, Gundersen S, Ryden S et al (1999) Efficacy of pamidronate in breast cancer with bone metastases: a randomized, double-blind placebo-controlled multicenter study. Anticancer Res 19:3383–3392PubMedGoogle Scholar
  15. 15.
    Müller V, Stahmann N, Riethdorf S et al (2005) Circulating tumor cells in breast cancer: correlation to bone marrow micrometastases, heterogeneous response to systemic therapy and low proliferative activity. Clin Cancer Res 11:3678–3685CrossRefPubMedGoogle Scholar
  16. 16.
    Pierga JY, Bonneton C, Vincent-Salomon A et al (2004) Clinical significance of immunocytochemical detection of tumor cells using digital microscopy in peripheral blood and bone marrow of breast cancer patients. Clin Cancer Res 10:1392–1400CrossRefPubMedGoogle Scholar
  17. 17.
    Rack B, Janni W, Schoberth A et al (2004) Secondary adjuvant therapy with zoledronate in patients with early breast cancer: is there an effect on persisting isolated tumor cells (ITC) in the bone marrow (BM)? Breast Cancer Res Treat 88(Suppl 1):Abstract 6019Google Scholar
  18. 18.
    Fehm T, Müller V, Alix-Panabières C et al (2008) Micrometastatic spread in breast cancer: detection, molecular characterization and clinical relevance. Breast Cancer Res 10(Suppl 1):S1CrossRefPubMedGoogle Scholar
  19. 19.
    Choesmel V, Anract P, Hoifodt H et al (2004) A relevant immunomagnetic assay to detect and characterize epithelial cell adhesion molecule-positive cells in bone marrow from patients with breast carcinoma: Immunomagnetic purification of micrometastases. Cancer 101:693–703CrossRefPubMedGoogle Scholar
  20. 20.
    Woelfle U, Breit E, Zafrakas K et al (2005) Bi-specific immunomagnetic enrichment of micrometastatic tumour cell clusters from bone marrow of cancer patients. J Immunol Methods 300:136–145CrossRefPubMedGoogle Scholar
  21. 21.
    MAQC Consortium, Shi L, Reid LH et al (2006) The microarray quality control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat Biotechnol 24:1151–1161CrossRefPubMedGoogle Scholar
  22. 22.
    Bolstad BM, Irizarry RA, Astrand M et al (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19:185–193CrossRefPubMedGoogle Scholar
  23. 23.
    Amir E, Ooi WS, Simmons C et al (2008) Discordance between receptor status in primary and metastatic breast cancer: an exploratory study of bone and bone marrow biopsies. Clin Oncol (R Coll Radiol) 20:763–768Google Scholar
  24. 24.
    Simmons C, Miller N, Geddie W et al. (2009) Does confirmatory tumor biopsy alter the management of breast cancer patients with distant metastases? Ann Oncol. doi: 10.1093/annonc/mdp028
  25. 25.
    Kang Y, Siegel PM, Shu W et al (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3:537–549CrossRefPubMedGoogle Scholar
  26. 26.
    Smirnov DA, Zweitzig DR, Foulk BW et al (2005) Global gene expression profiling of circulating tumor cells. Cancer Res 65:4993–4997CrossRefPubMedGoogle Scholar
  27. 27.
    Smirnov DA, Foulk BW, Doyle GV et al (2006) Global gene expression profiling of circulating endothelial cells in patients with metastatic carcinomas. Cancer Res 66:2918–2922CrossRefPubMedGoogle Scholar
  28. 28.
    Bertolini F, Mancuso P, Braidotti P, Shaked Y, Kerbel RS (2009) The multiple personality disorder phenotype(s) of circulating endothelial cells in cancer. Biochim Biophys Acta. doi: 10.1016/j.bbcan.2009.04.003
  29. 29.
    van ‘t Veer LJ, Dai H, van de Vijver MJ et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536CrossRefPubMedGoogle Scholar
  30. 30.
    Paik S, Shak S, Tang G et al (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351:2817–2826CrossRefPubMedGoogle Scholar
  31. 31.
    Zhu J, Jia X, Xiao G et al (2007) EGF-like ligands stimulate osteoclastogenesis by regulating expression of osteoclast regulatory factors by osteoblasts: implications for osteolytic bone metastases. J Biol Chem 282:26656–26664CrossRefPubMedGoogle Scholar
  32. 32.
    Weinstein RS, Roberson PK, Manolagas SC (2009) Giant osteoclast formation and long-term oral bisphosphonate therapy. N Engl J Med 360:53–62CrossRefPubMedGoogle Scholar
  33. 33.
    Muyal JP, Muyal V, Kaistha BP et al (2009) Systematic comparison of RNA extraction techniques from frozen and fresh lung tissues: checkpoint towards gene expression studies. Diagn Pathol 4:9CrossRefPubMedGoogle Scholar
  34. 34.
    Fend F, Emmert-Buck MR, Chuaqui R et al (1999) Immuno-LCM: laser capture microdissection of immunostained frozen sections for mRNA analysis. Am J Pathol 154:61–66PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • T. R. Cawthorn
    • 1
    • 2
  • E. Amir
    • 3
    • 4
  • R. Broom
    • 3
    • 4
  • O. Freedman
    • 3
    • 4
  • D. Gianfelice
    • 5
  • D. Barth
    • 6
  • D. Wang
    • 1
    • 2
  • I. Holen
    • 8
  • S. J. Done
    • 1
    • 2
    • 7
  • M. Clemons
    • 3
    • 4
    • 9
    • 10
    Email author
  1. 1.Division of Applied Molecular OncologyPrincess Margaret HospitalTorontoCanada
  2. 2.Department of Medical BiophysicsUniversity of TorontoTorontoCanada
  3. 3.Division of Medical Oncology & HaematologyPrincess Margaret HospitalTorontoCanada
  4. 4.Department of MedicineUniversity of TorontoTorontoCanada
  5. 5.Department of RadiologyToronto General HospitalTorontoCanada
  6. 6.Department of PathologyToronto General HospitalTorontoCanada
  7. 7.Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoCanada
  8. 8.Academic Unit of Clinical OncologyUniversity of SheffieldSheffieldUK
  9. 9.Campbell Family Institute for Breast Cancer ResearchTorontoCanada
  10. 10.Princess Margaret HospitalTorontoCanada

Personalised recommendations