Evaluation of pulsed high intensity focused ultrasound exposures on metastasis in a murine model

  • Hilary Hancock
  • Matthew R. Dreher
  • Nigel Crawford
  • Claire B. Pollock
  • Jennifer Shih
  • Bradford J. Wood
  • Kent Hunter
  • Victor Frenkel
Research Paper


High intensity focused ultrasound (HIFU) may be employed in two ways: continuous exposures for thermal ablation of tissue (>60°C), and pulsed-exposures for non-ablative effects, including low temperature hyperthermia (37–45°C), and non thermal effects (e.g. acoustic cavitation and radiation forces). Pulsed-HIFU effects may enhance the tissue’s permeability for improved delivery of drugs and genes, for example, by opening up gaps between cells in the vasculature and parenchyma. Inducing these effects may improve local targeting of therapeutic agents, however; concerns exist that pulsed exposures could theoretically also facilitate dissemination of tumor cells and exacerbate metastases. In the present study, the influence of pulsed-HIFU exposures on increasing metastatic burden was evaluated in a murine model with metastatic breast cancer. A preliminary study was carried out to validate the model and determine optimal timing for treatment and growth of lung metastases. Next, the effect of pulsed-HIFU on the metastatic burden was evaluated using quantitative image processing of whole-lung histological sections. Compared to untreated controls (2/15), a greater number of mice treated with pulsed-HIFU were found to have lungs “overgrown” with metastases (7/15), where individual metastases grew together such that they could not accurately be counted. Furthermore, area fraction of lung metastases (area of metastases/area of lungs) was ~30% greater in mice treated with pulsed-HIFU; however, these differences were not statistically significant. The present study details the development of an animal model for investigating the influence of interventional techniques or exposures (such as pulsed HIFU) on metastatic burden.


Pulsed-high intensity focused ultrasound Mvt-1 Metastasis Image processing Metastatic burden 



We would like to thank Dr Arnulfo Mendoza and Ms. Mary Angstadt for their technical assistance, and Dr Marius Linguraru for helpful consultations on image processing. This study was supported in part by Howard Hughes Medical Institute NIH Research Scholars Program (J.S.), and by the intramural research program of the NIH Clinical Center.


  1. 1.
    Kennedy J (2005) High-intensity focused ultrasound in the treatment of solid tumours. Nat Rev Cancer 5(4):321–327. doi: 10.1038/nrc1591 CrossRefPubMedGoogle Scholar
  2. 2.
    Frenkel V (2008) Ultrasound mediated delivery of drugs and genes to solid tumors. Adv Drug Deliv Rev 60(10):1193–1208. doi: 10.1016/j.addr.2008.03.007 CrossRefPubMedGoogle Scholar
  3. 3.
    Wu F, Wang Z, Chen W et al (2003) Preliminary experience using high intensity focused ultrasound for the treatment of patients with advanced stage renal malignancy. The Journal of Urology 170(6 Pt 1):2237–2240. doi: 10.1097/01.ju.0000097123.34790.70 CrossRefPubMedGoogle Scholar
  4. 4.
    Kennedy J, Wu F, ter Haar G et al (2004) High-intensity focused ultrasound for the treatment of liver tumours. Ultrasonics 42(1–9):931–935CrossRefPubMedGoogle Scholar
  5. 5.
    Kratzik C, Schatzl G, Lackner J et al (2006) Transcutaneous high-intensity focused ultrasonography can cure testicular cancer in solitary testis. Urology 67(6):1269–1273. doi: 10.1016/j.urology.2005.12.001 CrossRefPubMedGoogle Scholar
  6. 6.
    Catane R, Beck A, Inbar Y et al (2007) MR-guided focused ultrasound surgery (MRgFUS) for the palliation of pain in patients with bone metastases–preliminary clinical experience. Ann Oncol 18(1):163–167. doi: 10.1093/annonc/mdl335 CrossRefPubMedGoogle Scholar
  7. 7.
    Miller D, Song J (2003) Tumor growth reduction and DNA transfer by cavitation-enhanced high-intensity focused ultrasound in vivo. Ultrasound Med Biol 29(6):887–893. doi: 10.1016/S0301-5629(03)00031-0 CrossRefPubMedGoogle Scholar
  8. 8.
    Khaibullina A, Jang BS, Sun H et al (2008) Pulsed high-intensity focused ultrasound enhances uptake of radiolabeled monoclonal antibody to human epidermoid tumor in nude mice. J Nucl Med 49(2):295–302. doi: 10.2967/jnumed.107.046888 CrossRefPubMedGoogle Scholar
  9. 9.
    Poff J, Allen C, Traughber B et al (2008) Pulsed high-intensity focused ultrasound enhances apoptosis and growth inhibition of squamous cell carcinoma xenografts with proteasome inhibitor bortezomib. Radiology 248(2):485–491. doi: 10.1148/radiol.2482071674 CrossRefPubMedGoogle Scholar
  10. 10.
    Frenkel V, Li K (2006) Potential role of pulsed-high intensity focused ultrasound in gene therapy. Future Oncol (Lond Engl) 2(1):111–119. doi: 10.2217/14796694.2.1.111 CrossRefGoogle Scholar
  11. 11.
    Chung B, Wiley JP (2002) Extracorporeal shockwave therapy: a review. Sport Med (Auckl NZ) 32(13):851–865. doi: 10.2165/00007256-200232130-00004 CrossRefGoogle Scholar
  12. 12.
    Hancock HA, Smith LH, Cuesta J et al (2009) Investigations into pulsed-high intensity focused ultrasound enhanced delivery: preliminary evidence. Ultrasound Med Biol (in press)Google Scholar
  13. 13.
    Wu F, Wang ZB, Jin CB et al (2004) Circulating tumor cells in patients with solid malignancy treated by high-intensity focused ultrasound. Ultrasound Med Biol 30(4):511–517. doi: 10.1016/j.ultrasmedbio.2003.12.004 CrossRefPubMedGoogle Scholar
  14. 14.
    Oosterhof G, Cornel E, Smits G et al (1997) Influence of high-intensity focused ultrasound on the development of metastases. Eur Urol 32(1):91–95PubMedGoogle Scholar
  15. 15.
    Miller D, Dou C (2006) The potential for enhancement of mouse melanoma metastasis by diagnostic and high-amplitude ultrasound. Ultrasound Med Biol 32(7):1097–1101. doi: 10.1016/j.ultrasmedbio.2006.03.013 CrossRefPubMedGoogle Scholar
  16. 16.
    Miller D, Dou C (2005) Contrast-aided diagnostic ultrasound does not enhance lung metastasis in a mouse melanoma tumor model. J Ultrasound Med 24(3):349–354PubMedGoogle Scholar
  17. 17.
    Oosterhof GO, Cornel EB, Smits GA et al (1996) The influence of high-energy shock waves on the development of metastases. Ultrasound Med Biol 22(3):339–344. doi: 10.1016/0301-5629(95)02051-9 CrossRefPubMedGoogle Scholar
  18. 18.
    Miller DL, Dou C, Song J (2004) Lithotripter shockwave-induced enhancement of mouse melanoma lung metastasis: dependence on cavitation nucleation. J Endourol 18(9):925–929. doi: 10.1089/end.2004.18.925 CrossRefPubMedGoogle Scholar
  19. 19.
    Pei X, Noble M, Davoli M et al (2004) Explant-cell culture of primary mammary tumors from MMTV-c-Myc transgenic mice. In Vitro Cell Dev Biol Anim 40(1-2):14–21CrossRefPubMedGoogle Scholar
  20. 20.
    Crawford NP, Qian X, Ziogas A et al (2007) Rrp1b, a new candidate susceptibility gene for breast cancer progression and metastasis. PLOS Genet 3(11):e214. doi: 10.1371/journal.pgen.0030214 CrossRefPubMedGoogle Scholar
  21. 21.
    Dromi S, Frenkel V, Luk A et al (2007) Pulsed-high intensity focused ultrasound and low temperature-sensitive liposomes for enhanced targeted drug delivery and antitumor effect. Clin Cancer Res 13(9):2722–2727. doi: 10.1158/1078-0432.CCR-06-2443 CrossRefPubMedGoogle Scholar
  22. 22.
    Dittmar K, Xie J, Hunter F et al (2005) Pulsed high-intensity focused ultrasound enhances systemic administration of naked DNA in squamous cell carcinoma model: initial experience. Radiology 235(2):541–546. doi: 10.1148/radiol.2352040254 CrossRefPubMedGoogle Scholar
  23. 23.
    Hong SH, Briggs J, Newman R et al (2009) Murine osteosarcoma primary tumour growth and metastatic progression is maintained after marked suppression of serum insulin-like growth factor I. Int J Cancer 124(9):2042–2049CrossRefPubMedGoogle Scholar
  24. 24.
    Purushothaman A, Chen L, Yang Y et al (2008) Heparanase stimulation of protease expression implicates it as a master regulator of the aggressive tumor phenotype in myeloma. J Biol Chem 283(47):32628–32636. doi: 10.1074/jbc.M806266200 CrossRefPubMedGoogle Scholar
  25. 25.
    Tripathi M, Nandana S, Yamashita H et al (2008) Laminin-332 is a substrate for hepsin, a protease associated with prostate cancer progression. J Biol Chem 283(45):30576–30584. doi: 10.1074/jbc.M802312200 CrossRefPubMedGoogle Scholar
  26. 26.
    Villares GJ, Zigler M, Wang H et al (2008) Targeting melanoma growth and metastasis with systemic delivery of liposome-incorporated protease-activated receptor-1 small interfering RNA. Cancer Res 68(21):9078–9086. doi: 10.1158/0008-5472.CAN-08-2397 CrossRefPubMedGoogle Scholar
  27. 27.
    Rome C, Couillaud F, Moonen CT (2005) Spatial and temporal control of expression of therapeutic genes using heat shock protein promoters. Methods (S Diego Calif) 35(2):188–198. doi: 10.1016/j.ymeth.2004.08.011 Google Scholar
  28. 28.
    Kramer G, Steiner GE, Grobl M et al (2004) Response to sublethal heat treatment of prostatic tumor cells and of prostatic tumor infiltrating T-cells. Prostate 58(2):109–120. doi: 10.1002/pros.10314 CrossRefPubMedGoogle Scholar
  29. 29.
    Kimmel E (2006) Cavitation bioeffects. Crit Rev Biomed Eng 34(2):105–161PubMedGoogle Scholar
  30. 30.
    Frenkel V, Oberoi J, Stone MJ et al (2006) Pulsed high-intensity focused ultrasound enhances thrombolysis in an in vitro model. Radiology 239(1):86–93. doi: 10.1148/radiol.2391042181 CrossRefPubMedGoogle Scholar
  31. 31.
    Lizzi FL, Muratore R, Deng CX et al (2003) Radiation-force technique to monitor lesions during ultrasonic therapy. Ultrasound Med Biol 29(11):1593–1605. doi: 10.1016/S0301-5629(03)01052-4 CrossRefPubMedGoogle Scholar
  32. 32.
    Palmeri ML, McAleavey SA, Fong KL et al (2006) Dynamic mechanical response of elastic spherical inclusions to impulsive acoustic radiation force excitation. EEE Trans Ultrason Ferroelectr Freq Control 53(11):2065–2079. doi: 10.1109/TUFFC.2006.146 CrossRefGoogle Scholar
  33. 33.
    Cezeaux JL, Austin V, Hosseinipour MC et al (1991) The effects of shear stress and metastatic phenotype on the detachment of transformed cells. Biorheology 28(3–4):195–205PubMedGoogle Scholar
  34. 34.
    Chen CS (2008) Mechanotransduction—a field pulling together? J Cell Sci 121(Pt 20):3285–3292. doi: 10.1242/jcs.023507 CrossRefPubMedGoogle Scholar
  35. 35.
    Steeg P (2006) Tumor metastasis: mechanistic insights and clinical challenges. Nat Med 12(8):895–904. doi: 10.1038/nm1469 CrossRefPubMedGoogle Scholar
  36. 36.
    Schwartz MA, DeSimone DW (2008) Cell adhesion receptors in mechanotransduction. Curr Opin Cell Biol 20(5):551–556. doi: 10.1016/j.ceb.2008.05.005 CrossRefPubMedGoogle Scholar
  37. 37.
    Netti PA, Berk DA, Swartz MA et al (2000) Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Res 60(9):2497–2503PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Hilary Hancock
    • 1
  • Matthew R. Dreher
    • 1
  • Nigel Crawford
    • 2
  • Claire B. Pollock
    • 2
  • Jennifer Shih
    • 1
  • Bradford J. Wood
    • 1
  • Kent Hunter
    • 2
  • Victor Frenkel
    • 1
    • 3
  1. 1.Department of Radiology and Imaging Sciences, Clinical CenterNational Institutes of HealthBethesdaUSA
  2. 2.Laboratory of Cancer Biology and Genetics, Center for Cancer ResearchNational Cancer InstituteBethesdaUSA
  3. 3.Molecular Imaging Lab, Radiology and Imaging Sciences, Clinical CenterNational Institutes of HealthBethesdaUSA

Personalised recommendations