Clinical & Experimental Metastasis

, Volume 26, Issue 6, pp 559–567

Multi-faceted role of HSP40 in cancer

  • Aparna Mitra
  • Lalita A. Shevde
  • Rajeev S. Samant
Review

Abstract

HSP40 (DNAJ) is an understudied family of co-chaperones. The human genome codes for over 41 members of HSP40 family that reside at distinct intracellular locations. Despite their large numbers, little is known about their physiologic roles. Recent research has revealed involvement of some of the DNAJ family members in various types of cancers. In this article we summarize the information about the involvement of human DNAJ family members in various aspects of cancer biology. Furthermore we discuss the potential role of the J domain of DNAJ proteins in cancer biology.

Keywords

HSP40 DnaJ Cancer 

References

  1. 1.
    Rylander MN, Feng Y, Bass J, Diller KR (2005) Thermally induced injury and heat-shock protein expression in cells and tissues. Ann N Y Acad Sci 1066:222–242. doi:10.1196/annals.1363.009 PubMedCrossRefGoogle Scholar
  2. 2.
    Schafer C, Williams JA (2000) Stress kinases and heat shock proteins in the pancreas: possible roles in normal function and disease. J Gastroenterol 35:1–9PubMedGoogle Scholar
  3. 3.
    Pirkkala L, Nykanen P, Sistonen L (2001) Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J 15:1118–1131. doi:10.1096/fj00-0294rev PubMedCrossRefGoogle Scholar
  4. 4.
    Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381:571–579. doi:10.1038/381571a0 PubMedCrossRefGoogle Scholar
  5. 5.
    Gottesman S, Wickner S, Maurizi MR (1997) Protein quality control: triage by chaperones and proteases. Genes Dev 11:815–823. doi:10.1101/gad.11.7.815 PubMedCrossRefGoogle Scholar
  6. 6.
    Lee S, Tsai FT (2005) Molecular chaperones in protein quality control. J Biochem Mol Biol 38:259–265PubMedGoogle Scholar
  7. 7.
    Lindquist S (1986) The heat-shock response. Annu Rev Biochem 55:1151–1191. doi:10.1146/annurev.bi.55.070186.005443 PubMedCrossRefGoogle Scholar
  8. 8.
    Jaattela M (1999) Heat shock proteins as cellular lifeguards. Ann Med 31:261–271. doi:10.3109/07853899908995889 PubMedCrossRefGoogle Scholar
  9. 9.
    Matijasevic Z, Snyder JE, Ludlum DB (1998) Hypothermia causes a reversible, p53-mediated cell cycle arrest in cultured fibroblasts. Oncol Res 10:605–610PubMedGoogle Scholar
  10. 10.
    Sonna LA, Fujita J, Gaffin SL, Lilly CM (2002) Invited review: effects of heat and cold stress on mammalian gene expression. J Appl Physiol 92:1725–1742PubMedGoogle Scholar
  11. 11.
    Bohen SP, Kralli A, Yamamoto KR (1995) Hold ‘em and fold ‘em: chaperones and signal transduction. Science 268:1303–1304. doi:10.1126/science.7761850 PubMedCrossRefGoogle Scholar
  12. 12.
    Kampinga HH (2006) Chaperones in preventing protein denaturation in living cells and protecting against cellular stress. Handb Exp Pharmacol 172:1–42.PubMedCrossRefGoogle Scholar
  13. 13.
    Palotai R, Szalay MS, Csermely P (2008) Chaperones as integrators of cellular networks: changes of cellular integrity in stress and diseases. IUBMB Life 60:10–18PubMedGoogle Scholar
  14. 14.
    Falkowska-Podstawka M, Wernicki A (2003) Heat shock proteins in health and disease. Pol J Vet Sci 6:61–70PubMedGoogle Scholar
  15. 15.
    Sun Y, MacRae TH (2005) The small heat shock proteins and their role in human disease. FEBS J 272:2613–2627. doi:10.1111/j.1742-4658.2005.04708.x PubMedCrossRefGoogle Scholar
  16. 16.
    Mancuso C, Scapagini G, Curro D, Giuffrida Stella AM, De Marco C, Butterfield DA, Calabrese V (2007) Mitochondrial dysfunction, free radical generation and cellular stress response in neurodegenerative disorders. Front Biosci 12:1107–1123. doi:10.2741/2130 PubMedCrossRefGoogle Scholar
  17. 17.
    Razzaque MS, Taguchi T (2005) Involvement of stress proteins in renal diseases. Contrib Nephrol 148:1–7. doi:10.1159/000086033 PubMedCrossRefGoogle Scholar
  18. 18.
    Toko H, Minamino T, Komuro I (2008) Role of heat shock transcriptional factor 1 and heat shock proteins in cardiac hypertrophy. Trends Cardiovasc Med 18:88–93. doi:10.1016/j.tcm.2008.01.003 PubMedCrossRefGoogle Scholar
  19. 19.
    Mehta TA, Greenman J, Ettelaie C, Venkatasubramaniam A, Chetter IC, McCollum PT (2005) Heat shock proteins in vascular disease—a review. Eur J Vasc Endovasc Surg 29:395–402PubMedGoogle Scholar
  20. 20.
    Sammut IA, Harrison JC (2003) Cardiac mitochondrial complex activity is enhanced by heat shock proteins. Clin Exp Pharmacol Physiol 30:110–115. doi:10.1046/j.1440-1681.2003.03799.x PubMedCrossRefGoogle Scholar
  21. 21.
    Tsutsumi S, Neckers L (2007) Extracellular heat shock protein 90: a role for a molecular chaperone in cell motility and cancer metastasis. Cancer Sci 98:1536–1539. doi:10.1111/j.1349-7006.2007.00561.x PubMedCrossRefGoogle Scholar
  22. 22.
    Blagosklonny MV (2001) Re: role of the heat shock response and molecular chaperones in oncogenesis and cell death. J Natl Cancer Inst 93:239–240. doi:10.1093/jnci/93.3.239-a PubMedCrossRefGoogle Scholar
  23. 23.
    Jolly C, Morimoto RI (2000) Role of the heat shock response and molecular chaperones in oncogenesis and cell death. J Natl Cancer Inst 92:1564–1572. doi:10.1093/jnci/92.19.1564 PubMedCrossRefGoogle Scholar
  24. 24.
    Oka M, Sato S, Soda H, Fukuda M, Kawabata S, Nakatomi K, Shiozawa K, Nakamura Y, Ohtsuka K, Kohno S (2001) Autoantibody to heat shock protein Hsp40 in sera of lung cancer patients. Jpn J Cancer Res 92:316–320PubMedGoogle Scholar
  25. 25.
    Mayer MP, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62:670–684. doi:10.1007/s00018-004-4464-6 PubMedCrossRefGoogle Scholar
  26. 26.
    Qiu XB, Shao YM, Miao S, Wang L (2006) The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones. Cell Mol Life Sci 63:2560–2570. doi:10.1007/s00018-006-6192-6 PubMedCrossRefGoogle Scholar
  27. 27.
    Cheetham ME, Caplan AJ (1998) Structure, function and evolution of DnaJ: conservation and adaptation of chaperone function. Cell Stress Chaperones 3:28–36. doi:10.1379/1466-1268(1998)003<0028:SFAEOD>2.3.CO;2 PubMedCrossRefGoogle Scholar
  28. 28.
    Fan CY, Lee S, Ren HY, Cyr DM (2004) Exchangeable chaperone modules contribute to specification of type I and type II Hsp40 cellular function. Mol Biol Cell 15:761–773. doi:10.1091/mbc.E03-03-0146 PubMedCrossRefGoogle Scholar
  29. 29.
    Fan CY, Lee S, Cyr DM (2003) Mechanisms for regulation of Hsp70 function by Hsp40. Cell Stress Chaperones 8:309–316. doi:10.1379/1466-1268(2003)008<0309:MFROHF>2.0.CO;2 PubMedCrossRefGoogle Scholar
  30. 30.
    Ohtsuka K, Hata M (2000) Mammalian HSP40/DNAJ homologs: cloning of novel cDNAs and a proposal for their classification and nomenclature. Cell Stress Chaperones 5:98–112. doi:10.1379/1466-1268(2000)005<0098:MHDHCO>2.0.CO;2 PubMedCrossRefGoogle Scholar
  31. 31.
    Soti C, Nagy E, Giricz Z, Vigh L, Csermely P, Ferdinandy P (2005) Heat shock proteins as emerging therapeutic targets. Br J Pharmacol 146:769–780. doi:10.1038/sj.bjp.0706396 PubMedCrossRefGoogle Scholar
  32. 32.
    Georgakis GV, Younes A (2005) Heat-shock protein 90 inhibitors in cancer therapy: 17AAG and beyond. Future Oncol (London, England) 1:273–281. doi:10.1517/14796694.1.2.273 Google Scholar
  33. 33.
    Wegele H, Muller L, Buchner J (2004) Hsp70 and Hsp90—a relay team for protein folding. Rev Physiol Biochem Pharmacol 151:1–44. doi:10.1007/s10254-003-0021-1 PubMedCrossRefGoogle Scholar
  34. 34.
    Didelot C, Lanneau D, Brunet M, Joly AL, De Thonel A, Chiosis G, Garrido C (2007) Anti-cancer therapeutic approaches based on intracellular and extracellular heat shock proteins. Curr Med Chem 14:2839–2847. doi:10.2174/092986707782360079 PubMedCrossRefGoogle Scholar
  35. 35.
    Neckers L (2007) Heat shock protein 90: the cancer chaperone. J Biosci 32:517–530. doi:10.1007/s12038-007-0051-y PubMedCrossRefGoogle Scholar
  36. 36.
    Chambers AF (1999) The metastatic process: basic research and clinical implications. Oncol Res 11:161–168PubMedGoogle Scholar
  37. 37.
    Chambers AF, Groom AC, MacDonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2:563–572. doi:10.1038/nrc865 PubMedCrossRefGoogle Scholar
  38. 38.
    Chambers AF, Naumov GN, Varghese HJ, Nadkarni KV, MacDonald IC, Groom AC (2001) Critical steps in hematogenous metastasis: an overview. Surg Oncol Clin N Am 10:243–255 viiPubMedGoogle Scholar
  39. 39.
    McSherry EA, Donatello S, Hopkins AM, McDonnell S (2007) Molecular basis of invasion in breast cancer. Cell Mol Life Sci 64:3201–3218. doi:10.1007/s00018-007-7388-0 PubMedCrossRefGoogle Scholar
  40. 40.
    Rennstam K, Hedenfalk I (2006) High-throughput genomic technology in research and clinical management of breast cancer. Molecular signatures of progression from benign epithelium to metastatic breast cancer. Breast Cancer Res 8:213. doi:10.1186/bcr1528 PubMedCrossRefGoogle Scholar
  41. 41.
    Riker AI, Enkemann SA, Fodstad O, Liu S, Ren S, Morris C, Xi Y, Howell P, Metge B, Samant RS, Shevde LA, Li W, Eschrich S, Daud A, Ju J, Matta J (2008) The gene expression profiles of primary and metastatic melanoma yields a transition point of tumor progression and metastasis. BMC Med Genomics 1:13. doi:10.1186/1755-8794-1-13 PubMedCrossRefGoogle Scholar
  42. 42.
    Shevde LA, Welch DR (2003) Metastasis suppressor pathways—an evolving paradigm. Cancer Lett 198:1–20. doi:10.1016/S0304-3835(03)00304-5 PubMedCrossRefGoogle Scholar
  43. 43.
    Soo ET, Yip GW, Lwin ZM, Kumar SD, Bay BH (2008) Heat shock proteins as novel therapeutic targets in cancer. In Vivo (Athens, Greece) 22:311–315Google Scholar
  44. 44.
    Bishop SC, Burlison JA, Blagg BS (2007) Hsp90: a novel target for the disruption of multiple signaling cascades. Curr Cancer Drug Targets 7:369–388. doi:10.2174/156800907780809778 PubMedCrossRefGoogle Scholar
  45. 45.
    Syken J, De-Medina T, Munger K (1999) TID1, a human homolog of the Drosophila tumor suppressor l(2)tid, encodes two mitochondrial modulators of apoptosis with opposing functions. Proc Natl Acad Sci USA 96:8499–8504. doi:10.1073/pnas.96.15.8499 PubMedCrossRefGoogle Scholar
  46. 46.
    Kim SW, Chao TH, Xiang R, Lo JF, Campbell MJ, Fearns C, Lee JD (2004) Tid1, the human homologue of a Drosophila tumor suppressor, reduces the malignant activity of ErbB-2 in carcinoma cells. Cancer Res 64:7732–7739. doi:10.1158/0008-5472.CAN-04-1323 PubMedCrossRefGoogle Scholar
  47. 47.
    Trentin GA, He Y, Wu DC, Tang D, Rozakis-Adcock M (2004) Identification of a hTid-1 mutation which sensitizes gliomas to apoptosis. FEBS Lett 578:323–330. doi:10.1016/j.febslet.2004.11.034 PubMedCrossRefGoogle Scholar
  48. 48.
    Kim SW, Hayashi M, Lo JF, Fearns C, Xiang R, Lazennec G, Yang Y, Lee JD (2005) Tid1 negatively regulates the migratory potential of cancer cells by inhibiting the production of interleukin-8. Cancer Res 65:8784–8791. doi:10.1158/0008-5472.CAN-04-4422 PubMedCrossRefGoogle Scholar
  49. 49.
    Syken J, Macian F, Agarwal S, Rao A, Munger K (2003) TID1, a mammalian homologue of the drosophila tumor suppressor lethal(2) tumorous imaginal discs, regulates activation-induced cell death in Th2 cells. Oncogene 22:4636–4641. doi:10.1038/sj.onc.1206569 PubMedCrossRefGoogle Scholar
  50. 50.
    Tsai MF, Wang CC, Chang GC, Chen CY, Chen HY, Cheng CL, Yang YP, Wu CY, Shih FY, Liu CC, Lin HP, Jou YS, Lin SC, Lin CW, Chen WJ, Chan WK, Chen JJ, Yang PC (2006) A new tumor suppressor DnaJ-like heat shock protein, HLJ1, and survival of patients with non-small-cell lung carcinoma. J Natl Cancer Inst 98:825–838PubMedCrossRefGoogle Scholar
  51. 51.
    Wang CC, Tsai MF, Hong TM, Chang GC, Chen CY, Yang WM, Chen JJ, Yang PC (2005) The transcriptional factor YY1 upregulates the novel invasion suppressor HLJ1 expression and inhibits cancer cell invasion. Oncogene 24:4081–4093PubMedGoogle Scholar
  52. 52.
    Chen JJ, Peck K, Hong TM, Yang SC, Sher YP, Shih JY, Wu R, Cheng JL, Roffler SR, Wu CW, Yang PC (2001) Global analysis of gene expression in invasion by a lung cancer model. Cancer Res 61:5223–5230PubMedGoogle Scholar
  53. 53.
    Wang CC, Tsai MF, Dai TH, Hong TM, Chan WK, Chen JJ, Yang PC (2007) Synergistic activation of the tumor suppressor, HLJ1, by the transcription factors YY1 and activator protein 1. Cancer Res 67:4816–4826. doi:10.1158/0008-5472.CAN-07-0504 PubMedCrossRefGoogle Scholar
  54. 54.
    Chen HW, Lee JY, Huang JY, Wang CC, Chen WJ, Su SF, Huang CW, Ho CC, Chen JJ, Tsai MF, Yu SL, Yang PC (2008) Curcumin inhibits lung cancer cell invasion and metastasis through the tumor suppressor HLJ1. Cancer Res 68:7428–7438. doi:10.1158/0008-5472.CAN-07-6734 PubMedCrossRefGoogle Scholar
  55. 55.
    Canamasas I, Debes A, Natali PG, Kurzik-Dumke U (2003) Understanding human cancer using Drosophila: Tid47, a cytosolic product of the DnaJ-like tumor suppressor gene l2Tid, is a novel molecular partner of patched related to skin cancer. J Biol Chem 278:30952–30960. doi:10.1074/jbc.M304225200 PubMedCrossRefGoogle Scholar
  56. 56.
    Kurzik-Dumke U, Horner M, Czaja J, Nicotra MR, Simiantonaki N, Koslowski M, Natali PG (2008) Progression of colorectal cancers correlates with overexpression and loss of polarization of expression of the htid-1 tumor suppressor. Int J Mol Med 21:19–31PubMedGoogle Scholar
  57. 57.
    Edwards KM, Munger K (2004) Depletion of physiological levels of the human TID1 protein renders cancer cell lines resistant to apoptosis mediated by multiple exogenous stimuli. Oncogene 23:8419–8431. doi:10.1038/sj.onc.1207732 PubMedCrossRefGoogle Scholar
  58. 58.
    Lo JF, Hayashi M, Woo-Kim S, Tian B, Huang JF, Fearns C, Takayama S, Zapata JM, Yang Y, Lee JD (2004) Tid1, a cochaperone of the heat shock 70 protein and the mammalian counterpart of the Drosophila tumor suppressor l(2)tid, is critical for early embryonic development and cell survival. Mol Cell Biol 24:2226–2236. doi:10.1128/MCB.24.6.2226-2236.2004 PubMedCrossRefGoogle Scholar
  59. 59.
    Lu B, Garrido N, Spelbrink JN, Suzuki CK (2006) Tid1 isoforms are mitochondrial DnaJ-like chaperones with unique carboxyl termini that determine cytosolic fate. J Biol Chem 281:13150–13158. doi:10.1074/jbc.M509179200 PubMedCrossRefGoogle Scholar
  60. 60.
    Sarkar S, Pollack BP, Lin KT, Kotenko SV, Cook JR, Lewis A, Pestka S (2001) hTid-1, a human DnaJ protein, modulates the interferon signaling pathway. J Biol Chem 276:49034–49042. doi:10.1074/jbc.M103683200 PubMedCrossRefGoogle Scholar
  61. 61.
    Huang S, Mills L, Mian B, Tellez C, McCarty M, Yang XD, Gudas JM, Bar-Eli M (2002) Fully humanized neutralizing antibodies to interleukin-8 (ABX-IL8) inhibit angiogenesis, tumor growth, and metastasis of human melanoma. Am J Pathol 161:125–134PubMedGoogle Scholar
  62. 62.
    Cheng H, Cenciarelli C, Nelkin G, Tsan R, Fan D, Cheng-Mayer C, Fidler IJ (2005) Molecular mechanism of hTid-1, the human homolog of Drosophila tumor suppressor l(2)Tid, in the regulation of NF-kappaB activity and suppression of tumor growth. Mol Cell Biol 25:44–59. doi:10.1128/MCB.25.1.44-59.2005 PubMedCrossRefGoogle Scholar
  63. 63.
    Abba MC, Drake JA, Hawkins KA, Hu Y, Sun H, Notcovich C, Gaddis S, Sahin A, Baggerly K, Aldaz CM (2004) Transcriptomic changes in human breast cancer progression as determined by serial analysis of gene expression. Breast Cancer Res 6:R499–R513. doi:10.1186/bcr899 PubMedCrossRefGoogle Scholar
  64. 64.
    Mitra A, Fillmore RA, Metge BJ, Rajesh M, Xi Y, King J, Ju J, Pannell L, Shevde LA, Samant RS (2008) Large isoform of MRJ (DNAJB6) reduces malignant activity of breast cancer. Breast Cancer Res 10:R22. doi:10.1186/bcr1874 PubMedCrossRefGoogle Scholar
  65. 65.
    Dai YS, Xu J, Molkentin JD (2005) The DnaJ-related factor Mrj interacts with nuclear factor of activated T cells c3 and mediates transcriptional repression through class II histone deacetylase recruitment. Mol Cell Biol 25:9936–9948. doi:10.1128/MCB.25.22.9936-9948.2005 PubMedCrossRefGoogle Scholar
  66. 66.
    Hurst DR, Mehta A, Moore BP, Phadke PA, Meehan WJ, Accavitti MA, Shevde LA, Hopper JE, Xie Y, Welch DR, Samant RS (2006) Breast cancer metastasis suppressor 1 (BRMS1) is stabilized by the Hsp90 chaperone. Biochem Biophys Res Commun 348:1429–1435. doi:10.1016/j.bbrc.2006.08.005 PubMedCrossRefGoogle Scholar
  67. 67.
    Meehan WJ, Samant RS, Hopper JE, Carrozza MJ, Shevde LA, Workman JL, Eckert KA, Verderame MF, Welch DR (2004) Breast cancer metastasis suppressor 1 (BRMS1) forms complexes with retinoblastoma-binding protein 1 (RBP1) and the mSin3 histone deacetylase complex and represses transcription. J Biol Chem 279:1562–1569. doi:10.1074/jbc.M307969200 PubMedCrossRefGoogle Scholar
  68. 68.
    De Bessa SA, Salaorni S, Patrao DF, Neto MM, Brentani MM, Nagai MA (2006) JDP1 (DNAJC12/Hsp40) expression in breast cancer and its association with estrogen receptor status. Int J Mol Med 17:363–367PubMedGoogle Scholar
  69. 69.
    Lindsey JC, Lusher ME, Strathdee G, Brown R, Gilbertson RJ, Bailey S, Ellison DW, Clifford SC (2006) Epigenetic inactivation of MCJ (DNAJD1) in malignant paediatric brain tumours. Int J Cancer 118:346–352. doi:10.1002/ijc.21353 PubMedCrossRefGoogle Scholar
  70. 70.
    Prols F, Mayer MP, Renner O, Czarnecki PG, Ast M, Gassler C, Wilting J, Kurz H, Christ B (2001) Upregulation of the cochaperone Mdg1 in endothelial cells is induced by stress and during in vitro angiogenesis. Exp Cell Res 269:42–53. doi:10.1006/excr.2001.5294 PubMedCrossRefGoogle Scholar
  71. 71.
    Wang CC, Liao YP, Mischel PS, Iwamoto KS, Cacalano NA, McBride WH (2006) HDJ-2 as a target for radiosensitization of glioblastoma multiforme cells by the farnesyltransferase inhibitor R115777 and the role of the p53/p21 pathway. Cancer Res 66:6756–6762. doi:10.1158/0008-5472.CAN-06-0185 PubMedCrossRefGoogle Scholar
  72. 72.
    Gore L, Holden SN, Cohen RB, Morrow M, Pierson AS, O’Bryant CL, Persky M, Gustafson D, Mikule C, Zhang S, Palmer PA, Eckhardt SG (2006) A phase I safety, pharmacological and biological study of the farnesyl protein transferase inhibitor, tipifarnib and capecitabine in advanced solid tumors. Ann Oncol 17:1709–1717. doi:10.1093/annonc/mdl282 PubMedCrossRefGoogle Scholar
  73. 73.
    Lobell RB, Omer CA, Abrams MT, Bhimnathwala HG, Brucker MJ, Buser CA, Davide JP, deSolms SJ, Dinsmore CJ, Ellis-Hutchings MS, Kral AM, Liu D, Lumma WC, Machotka SV, Rands E, Williams TM, Graham SL, Hartman GD, Oliff AI, Heimbrook DC, Kohl NE (2001) Evaluation of farnesyl: protein transferase and geranylgeranyl: protein transferase inhibitor combinations in preclinical models. Cancer Res 61:8758–8768PubMedGoogle Scholar
  74. 74.
    Patnaik A, Eckhardt SG, Izbicka E, Tolcher AA, Hammond LA, Takimoto CH, Schwartz G, McCreery H, Goetz A, Mori M, Terada K, Gentner L, Rybak ME, Richards H, Zhang S, Rowinsky EK (2003) A phase I, pharmacokinetic, and biological study of the farnesyltransferase inhibitor tipifarnib in combination with gemcitabine in patients with advanced malignancies. Clin Cancer Res 9:4761–4771PubMedGoogle Scholar
  75. 75.
    Britten CD, Rowinsky EK, Soignet S, Patnaik A, Yao SL, Deutsch P, Lee Y, Lobell RB, Mazina KE, McCreery H, Pezzuli S, Spriggs D (2001) A phase I and pharmacological study of the farnesyl protein transferase inhibitor L-778, 123 in patients with solid malignancies. Clin Cancer Res 7:3894–3903PubMedGoogle Scholar
  76. 76.
    Han C, Chen T, Li N, Yang M, Wan T, Cao X (2007) HDJC9, a novel human type C DnaJ/HSP40 member interacts with and cochaperones HSP70 through the J domain. Biochem Biophys Res Commun 353:280–285. doi:10.1016/j.bbrc.2006.12.013 PubMedCrossRefGoogle Scholar
  77. 77.
    Ward BK, Mark PJ, Ingram DM, Minchin RF, Ratajczak T (1999) Expression of the estrogen receptor-associated immunophilins, cyclophilin 40 and FKBP52, in breast cancer. Breast Cancer Res Treat 58:267–280. doi:10.1023/A:1006390804515 PubMedCrossRefGoogle Scholar
  78. 78.
    Miller RT, Anderson SP, Corton JC, Cattley RC (2000) Apoptosis, mitosis and cyclophilin-40 expression in regressing peroxisome proliferator-induced adenomas. Carcinogenesis 21:647–652. doi:10.1093/carcin/21.4.647 PubMedCrossRefGoogle Scholar
  79. 79.
    Periyasamy S, Warrier M, Tillekeratne MP, Shou W, Sanchez ER (2007) The immunophilin ligands cyclosporin A and FK506 suppress prostate cancer cell growth by androgen receptor-dependent and -independent mechanisms. Endocrinology 148:4716–4726. doi:10.1210/en.2007-0145 PubMedCrossRefGoogle Scholar
  80. 80.
    Pellecchia M, Szyperski T, Wall D, Georgopoulos C, Wuthrich K (1996) NMR structure of the J-domain and the Gly/Phe-rich region of the Escherichia coli DnaJ chaperone. J Mol Biol 260:236–250. doi:10.1006/jmbi.1996.0395 PubMedCrossRefGoogle Scholar
  81. 81.
    Kimura Y, Yahara I, Lindquist S (1995) Role of the protein chaperone YDJ1 in establishing Hsp90-mediated signal transduction pathways. Science 268:1362–1365. doi:10.1126/science.7761857 PubMedCrossRefGoogle Scholar
  82. 82.
    Schnaider T, Soti C, Cheetham ME, Miyata Y, Yahara I, Csermely P (2000) Interaction of the human DnaJ homologue, HSJ1b with the 90 kDa heat shock protein, Hsp90. Life Sci 67:1455–1465. doi:10.1016/S0024-3205(00)00735-9 PubMedCrossRefGoogle Scholar
  83. 83.
    Hennessy F, Nicoll WS, Zimmermann R, Cheetham ME, Blatch GL (2005) Not all J domains are created equal: implications for the specificity of Hsp40–Hsp70 interactions. Protein Sci 14:1697–1709. doi:10.1110/ps.051406805 PubMedCrossRefGoogle Scholar
  84. 84.
    Genevaux P, Lang F, Schwager F, Vartikar JV, Rundell K, Pipas JM, Georgopoulos C, Kelley WL (2003) Simian virus 40 T antigens and J domains: analysis of Hsp40 cochaperone functions in Escherichia coli. J Virol 77:10706–10713. doi:10.1128/JVI.77.19.10706-10713.2003 PubMedCrossRefGoogle Scholar
  85. 85.
    Hahn WC, Dessain SK, Brooks MW, King JE, Elenbaas B, Sabatini DM, DeCaprio JA, Weinberg RA (2002) Enumeration of the simian virus 40 early region elements necessary for human cell transformation. Mol Cell Biol 22:2111–2123. doi:10.1128/MCB.22.7.2111-2123.2002 PubMedCrossRefGoogle Scholar
  86. 86.
    Sullivan CS, Tremblay JD, Fewell SW, Lewis JA, Brodsky JL, Pipas JM (2000) Species-specific elements in the large T-antigen J domain are required for cellular transformation and DNA replication by simian virus 40. Mol Cell Biol 20:5749–5757. doi:10.1128/MCB.20.15.5749-5757.2000 PubMedCrossRefGoogle Scholar
  87. 87.
    Kao MC, Liu GY, Chuang TC, Lin YS, Wuu JA, Law SL (1998) The N-terminal 178-amino-acid domain only of the SV40 large T antigen acts as a transforming suppressor of the HER-2/neu oncogene. Oncogene 16:547–554. doi:10.1038/sj.onc.1201513 PubMedCrossRefGoogle Scholar
  88. 88.
    Chuang TC, Yu YH, Lin YS, Wang SS, Kao MC (2002) The N-terminal domain of SV40 large T antigen represses the HER2/neu-mediated transformation and metastatic potential in breast cancers. FEBS Lett 511:46–50. doi:10.1016/S0014-5793(01)03277-X PubMedCrossRefGoogle Scholar
  89. 89.
    Vilchez RA, Butel JS (2003) SV40 in human brain cancers and non-Hodgkin’s lymphoma. Oncogene 22:5164–5172. doi:10.1038/sj.onc.1206547 PubMedCrossRefGoogle Scholar
  90. 90.
    Shah KV (2007) SV40 and human cancer: a review of recent data. Int J Cancer 120:215–223. doi:10.1002/ijc.22425 PubMedCrossRefGoogle Scholar
  91. 91.
    Shah KV (2000) Does SV40 infection contribute to the development of human cancers? Rev Med Virol 10:31–43. doi:10.1002/(SICI)1099-1654(200001/02)10:1<31::AID-RMV260>3.0.CO;2-I PubMedCrossRefGoogle Scholar
  92. 92.
    Pipas JM (1998) Molecular chaperone function of the SV40 large T antigen. Dev Biol Stand 94:313–319PubMedGoogle Scholar
  93. 93.
    Poulin DL, DeCaprio JA (2006) Is there a role for SV40 in human cancer? J Clin Oncol 24:4356–4365. doi:10.1200/JCO.2005.03.7101 PubMedCrossRefGoogle Scholar
  94. 94.
    Srinivasan A, McClellan AJ, Vartikar J, Marks I, Cantalupo P, Li Y, Whyte P, Rundell K, Brodsky JL, Pipas JM (1997) The amino-terminal transforming region of simian virus 40 large T and small t antigens functions as a J domain. Mol Cell Biol 17:4761–4773PubMedGoogle Scholar
  95. 95.
    Cohen SJ, Ho L, Ranganathan S et al (2003) Phase II and pharmacodynamic study of the farnesyltransferase inhibitor R115777 as initial therapy in patients with metastatic pancreatic adenocarcinoma. J Clin Oncol 21:1301–1306PubMedCrossRefGoogle Scholar
  96. 96.
    Tarunina M, Alger L, Chu G, Munger K, Gudkov A, Jat PS (2004) Functional genetic screen for genes involved in senescence: role of Tid1, a homologue of the Drosophila tumor suppressor I(2)tid, in senescence and cell survival. Mol Cell Biol 24:10792–10801PubMedCrossRefGoogle Scholar
  97. 97.
    Isachenko N, Dyakova N, Aushev V, Chepurnych T, Gurova K, Tatosyan A (2006) High expression of shMDG1 gene is associated with low metastatic potential of tumor cells. Oncogene 25:317–322PubMedGoogle Scholar
  98. 98.
    Witham J, Vidot S, Agarwal R, Kaye SB, Richardson A (2008) Transient ectopic expression as a method to detect genes conferring drug resistance. Int J Cancer 122:2641–2645PubMedCrossRefGoogle Scholar
  99. 99.
    Hatle KM, Neveu W, Dienz O et al (2007) Methylation-controlled J protein promotes c-Jun degradation to prevent ABCB1 transporter expression. Mol Cell Biol 27:2952–2966PubMedCrossRefGoogle Scholar
  100. 100.
    Ward BK, Kumar P, Turbett GR et al (2001) Allelic loss of cyclophilin 40, an estrogen receptor-associated immunophilin, in breast carcinomas. J Cancer Res Clin Oncol 127:109–115PubMedCrossRefGoogle Scholar
  101. 101.
    Kumar P, Ward BK, Minchin RF, Ratajczak T (2001) Regulation of the Hsp90-binding immunophilin, cyclophilin 40, is mediated by multiple sites for GA-binding protein (GABP). Cell Stress Chaperones 6:78–91PubMedCrossRefGoogle Scholar
  102. 102.
    Corpet F (1988) Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16:10881–10890PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Aparna Mitra
    • 1
  • Lalita A. Shevde
    • 1
  • Rajeev S. Samant
    • 1
  1. 1.Department of Oncologic Sciences, Mitchell Cancer InstituteUniversity of South AlabamaMobileUSA

Personalised recommendations